Optomechanical Hot-Spots in Metallic ...
Document type :
Article dans une revue scientifique: Article original
DOI :
Title :
Optomechanical Hot-Spots in Metallic Nanorod–Polymer Nanocomposites
Author(s) :
Vasileiadis, Thomas [Auteur correspondant]
Uniwersytet im. Adama Mickiewicza w Poznaniu = Adam Mickiewicz University in Poznań [UAM]
Max Planck Society
Noual, Adnane [Auteur]
University of Mohammed I - Université Mohammed Premier
Wang, Yuchen [Auteur]
University of Pennsylvania
Graczykowski, Bartlomiej [Auteur]
Uniwersytet im. Adama Mickiewicza w Poznaniu = Adam Mickiewicz University in Poznań [UAM]
Max Planck Institute for Polymer Research
Djafari-Rouhani, Bahram [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Yang, Shu [Auteur]
University of Pennsylvania
Fytas, George [Auteur correspondant]
Institute of Electronic Structure and Laser [FORTH-IESL]
Max Planck Institute for Polymer Research
Uniwersytet im. Adama Mickiewicza w Poznaniu = Adam Mickiewicz University in Poznań [UAM]
Max Planck Society
Noual, Adnane [Auteur]
University of Mohammed I - Université Mohammed Premier
Wang, Yuchen [Auteur]
University of Pennsylvania
Graczykowski, Bartlomiej [Auteur]
Uniwersytet im. Adama Mickiewicza w Poznaniu = Adam Mickiewicz University in Poznań [UAM]
Max Planck Institute for Polymer Research
Djafari-Rouhani, Bahram [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Yang, Shu [Auteur]
University of Pennsylvania
Fytas, George [Auteur correspondant]
Institute of Electronic Structure and Laser [FORTH-IESL]
Max Planck Institute for Polymer Research
Journal title :
ACS Nano
Pages :
20419-20429
Publisher :
American Chemical Society
Publication date :
2022
ISSN :
1936-0851
English keyword(s) :
optomechanics
Brillouin light scattering
plasmonic enhancement
elastic vibrations
nanorods
polymer nanocomposites
Brillouin light scattering
plasmonic enhancement
elastic vibrations
nanorods
polymer nanocomposites
HAL domain(s) :
Physique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
English abstract : [en]
Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their ...
Show more >Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their interactions, but their use is challenging for disordered systems and colloids dispersed in insulating matrices. Here, we investigate the effect of plasmonic coupling on optomechanics with Brillouin light spectroscopy (BLS) in a prototypical metal–polymer nanocomposite, gold nanorods (Au NRs) in polyvinyl alcohol. The intensity of the light inelastically scattered on thermal phonons captured by BLS is strongly affected by the wavelength of the probing light. When light is resonant with the transverse plasmons, BLS reveals mostly the normal vibrational modes of single NRs. For lower energy off-resonant light, BLS is dominated by coupled bending modes of NR dimers. The experimental results, supported by optomechanical calculations, document plasmonically enhanced BLS and reveal energy-dependent confinement of coupled plasmons close to the tips of NR dimers, generating BLS hot-spots. Our work establishes BLS as an optomechanical probe of plasmons and promotes nanorod–soft matter nanocomposites for acousto-plasmonic applications.Show less >
Show more >Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their interactions, but their use is challenging for disordered systems and colloids dispersed in insulating matrices. Here, we investigate the effect of plasmonic coupling on optomechanics with Brillouin light spectroscopy (BLS) in a prototypical metal–polymer nanocomposite, gold nanorods (Au NRs) in polyvinyl alcohol. The intensity of the light inelastically scattered on thermal phonons captured by BLS is strongly affected by the wavelength of the probing light. When light is resonant with the transverse plasmons, BLS reveals mostly the normal vibrational modes of single NRs. For lower energy off-resonant light, BLS is dominated by coupled bending modes of NR dimers. The experimental results, supported by optomechanical calculations, document plasmonically enhanced BLS and reveal energy-dependent confinement of coupled plasmons close to the tips of NR dimers, generating BLS hot-spots. Our work establishes BLS as an optomechanical probe of plasmons and promotes nanorod–soft matter nanocomposites for acousto-plasmonic applications.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
European Project :
Source :
Files
- ThomasVasileiadis_acsnano.2c06673_2022.pdf
- Open access
- Access the document
- PMC9798866
- Open access
- Access the document
- document
- Open access
- Access the document
- document
- Open access
- Access the document
- ThomasVasileiadis_acsnano.2c06673_2022.pdf
- Open access
- Access the document