Highly Si‐doped GaN regrown by MOVPE for ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Title :
Highly Si‐doped GaN regrown by MOVPE for ohmic contact applied to quaternary barrier based HEMT
Author(s) :
Pitaval, Charles [Auteur correspondant]
Puissance - IEMN [PUISSANCE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Alcatel-Thales III-V Lab [III-V Lab]
Lacam, Cédric [Auteur]
Alcatel-Thales III-V Lab [III-V Lab]
Defrance, Nicolas [Auteur]
Puissance - IEMN [PUISSANCE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Gaquiere, Christophe [Auteur]
Puissance - IEMN [PUISSANCE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Michel, Nicolas [Auteur]
Alcatel-Thales III-V Lab [III-V Lab]
Parillaud, Olivier [Auteur]
Alcatel-Thales III-V Lab [III-V Lab]
Thales Research and Technologies [Orsay] [TRT]
Delage, Sylvain [Auteur]
Alcatel-Thales III-V Lab [III-V Lab]
Puissance - IEMN [PUISSANCE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Alcatel-Thales III-V Lab [III-V Lab]
Lacam, Cédric [Auteur]
Alcatel-Thales III-V Lab [III-V Lab]
Defrance, Nicolas [Auteur]

Puissance - IEMN [PUISSANCE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Gaquiere, Christophe [Auteur]

Puissance - IEMN [PUISSANCE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Michel, Nicolas [Auteur]
Alcatel-Thales III-V Lab [III-V Lab]
Parillaud, Olivier [Auteur]
Alcatel-Thales III-V Lab [III-V Lab]
Thales Research and Technologies [Orsay] [TRT]
Delage, Sylvain [Auteur]
Alcatel-Thales III-V Lab [III-V Lab]
Journal title :
Physica Status Solidi A (applications and materials science)
Pages :
2200476
Publisher :
Wiley
Publication date :
2023-08
ISSN :
1862-6300
English keyword(s) :
GaN
HEMT
ohmic contacts
Regrowth
Millimeter-wave
HEMT
ohmic contacts
Regrowth
Millimeter-wave
HAL domain(s) :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
English abstract : [en]
The quaternary barrier InAlGaN is suitable for GaN HEMT power microwave applications. High doping of semiconductor under the drain and source is a known suitable solution to achieve low ohmic contact resistance. However, ...
Show more >The quaternary barrier InAlGaN is suitable for GaN HEMT power microwave applications. High doping of semiconductor under the drain and source is a known suitable solution to achieve low ohmic contact resistance. However, InAlGaN quaternary alloys require low thermal budget to avoid indium desorption from the active layer during regrowth and thus deteriorating the barrier. This article presents a selective area growth technique at 850 °C by MOVPE to achieve low contact resistance with respect of temperature constraint. Regrowth temperature and mask geometry were investigated to achieve selectivity and control of the regrowth rate. The use of H2 as carrier gas decomposes the GaN buffer layer and damages the surface creating material cluster during regrowth. Growth with N2 carrier gas shows non-selective epitaxy, as there are deposits on the entire surface of the dielectric mask. Switching from one carrier gas to another depending on the step in the MOVPE reactor helps to control both the morphology and selectivity. The resulting high doping levels of 8 × 1019 cm-3 leads to a low contact resistance of 0.26 Ω.mm.Show less >
Show more >The quaternary barrier InAlGaN is suitable for GaN HEMT power microwave applications. High doping of semiconductor under the drain and source is a known suitable solution to achieve low ohmic contact resistance. However, InAlGaN quaternary alloys require low thermal budget to avoid indium desorption from the active layer during regrowth and thus deteriorating the barrier. This article presents a selective area growth technique at 850 °C by MOVPE to achieve low contact resistance with respect of temperature constraint. Regrowth temperature and mask geometry were investigated to achieve selectivity and control of the regrowth rate. The use of H2 as carrier gas decomposes the GaN buffer layer and damages the surface creating material cluster during regrowth. Growth with N2 carrier gas shows non-selective epitaxy, as there are deposits on the entire surface of the dielectric mask. Switching from one carrier gas to another depending on the step in the MOVPE reactor helps to control both the morphology and selectivity. The resulting high doping levels of 8 × 1019 cm-3 leads to a low contact resistance of 0.26 Ω.mm.Show less >
Language :
Anglais
Popular science :
Non
Source :