Resolution enhancement in 1D solid-state ...
Type de document :
Article dans une revue scientifique: Article original
PMID :
URL permanente :
Titre :
Resolution enhancement in 1D solid-state NMR spectra of spin-9/2 quadrupolar nuclei
Auteur(s) :
Titre de la revue :
J. Magn. Reson.
Nom court de la revue :
J. Magn. Reson.
Pagination :
311-316
Date de publication :
2006-06
ISSN :
1090-7807
Mot(s)-clé(s) en anglais :
magic-angle spinning NMR
quadrupolar nuclei
satellite-transition MAS
high-resolution
homogenous broadening
quadrupolar nuclei
satellite-transition MAS
high-resolution
homogenous broadening
Discipline(s) HAL :
Chimie
Résumé en anglais : [en]
NMR is an insensitive spectroscopy, which often requires numerous accumulations, especially for 2D high-resolution methods (MQMAS and STMAS) for quadrupolar nuclei in solids. This may be a very important limitation for the ...
Lire la suite >NMR is an insensitive spectroscopy, which often requires numerous accumulations, especially for 2D high-resolution methods (MQMAS and STMAS) for quadrupolar nuclei in solids. This may be a very important limitation for the case of insensitive nuclei, where a 1D spectrum with better resolution than the central-transition is then highly desirable. This problem has been addressed for the case of spin-5/2 nuclei by the Double-Quantum Filtered Satellite Transition Spectroscopy: DQF-SATRAS-ST1. We extend this concept to the spin-9/2 nuclei with the SATRAS-ST2 method. This method allows the observation of 1D spectra with a much better resolution than that observed in the isotropic projection of 2D MQ/ST1-MAS spectra. This enhanced resolution results from the much smaller homogeneous broadening that occurs on the SATRAS-ST2 method as compared to MQ/ST1-MAS spectra. The main interest in this method is for well-crystallized samples.Lire moins >
Lire la suite >NMR is an insensitive spectroscopy, which often requires numerous accumulations, especially for 2D high-resolution methods (MQMAS and STMAS) for quadrupolar nuclei in solids. This may be a very important limitation for the case of insensitive nuclei, where a 1D spectrum with better resolution than the central-transition is then highly desirable. This problem has been addressed for the case of spin-5/2 nuclei by the Double-Quantum Filtered Satellite Transition Spectroscopy: DQF-SATRAS-ST1. We extend this concept to the spin-9/2 nuclei with the SATRAS-ST2 method. This method allows the observation of 1D spectra with a much better resolution than that observed in the isotropic projection of 2D MQ/ST1-MAS spectra. This enhanced resolution results from the much smaller homogeneous broadening that occurs on the SATRAS-ST2 method as compared to MQ/ST1-MAS spectra. The main interest in this method is for well-crystallized samples.Lire moins >
Langue :
Anglais
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
RMN et matériaux inorganiques (RM2I)
Date de dépôt :
2023-05-30T18:30:36Z