Hydrogen activation on Mo-based sulfide ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
PMID :
URL permanente :
Titre :
Hydrogen activation on Mo-based sulfide catalysts, a periodic DFT study
Auteur(s) :
Travert, Arnaud [Auteur]
Nakamura, Hiroyuki [Auteur]
Van Santen, Rutger A. [Auteur]
Cristol, Sylvain [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Paul, Jean-François [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Payen, Edmond [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Nakamura, Hiroyuki [Auteur]
Van Santen, Rutger A. [Auteur]
Cristol, Sylvain [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Paul, Jean-François [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Payen, Edmond [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Titre de la revue :
Journal of the American Chemical Society
Nom court de la revue :
J. Am. Chem. Soc.
Numéro :
124
Pagination :
7084-7095
Date de publication :
2002-05-24
ISSN :
0002-7863
Discipline(s) HAL :
Chimie
Résumé en anglais : [en]
Hydrogen adsorption on Mo−S, Co−Mo−S, and Ni−Mo−S (101̄0) surfaces has been modeled by means of periodic DFT calculations taking into account the gaseous surrounding of these catalysts in working conditions. On the stable ...
Lire la suite >Hydrogen adsorption on Mo−S, Co−Mo−S, and Ni−Mo−S (101̄0) surfaces has been modeled by means of periodic DFT calculations taking into account the gaseous surrounding of these catalysts in working conditions. On the stable Mo−S surface, only six-fold coordinated Mo cations are present, whereas substitution by Co or Ni leads to the creation of stable coordinatively unsaturated sites. On the stable MoS2 surface, hydrogen dissociation is always endothermic and presents a high activation barrier. On Co−Mo−S surfaces, the ability to dissociate H2 depends on the nature of the metal atom and the sulfur coordination environment. As an adsorption center, Co strongly favors molecular hydrogen activation as compared to the Mo atoms. Co also increases the ability of its sulfur atom ligands to bind hydrogen. Investigation of surface acidity using ammonia as a probe molecule confirms the crucial role of sulfur basicity on hydrogen activation on these surfaces. As a result, Co−Mo−S surfaces present Co−S sites for which the dissociation of hydrogen is exothermic and weakly activated. On Ni−Mo−S surfaces, Ni−S pairs are not stable and do not provide for an efficient way for hydrogen activation. These theoretical results are in good agreement with recent experimental studies of H2−D2 exchange reactions.Lire moins >
Lire la suite >Hydrogen adsorption on Mo−S, Co−Mo−S, and Ni−Mo−S (101̄0) surfaces has been modeled by means of periodic DFT calculations taking into account the gaseous surrounding of these catalysts in working conditions. On the stable Mo−S surface, only six-fold coordinated Mo cations are present, whereas substitution by Co or Ni leads to the creation of stable coordinatively unsaturated sites. On the stable MoS2 surface, hydrogen dissociation is always endothermic and presents a high activation barrier. On Co−Mo−S surfaces, the ability to dissociate H2 depends on the nature of the metal atom and the sulfur coordination environment. As an adsorption center, Co strongly favors molecular hydrogen activation as compared to the Mo atoms. Co also increases the ability of its sulfur atom ligands to bind hydrogen. Investigation of surface acidity using ammonia as a probe molecule confirms the crucial role of sulfur basicity on hydrogen activation on these surfaces. As a result, Co−Mo−S surfaces present Co−S sites for which the dissociation of hydrogen is exothermic and weakly activated. On Ni−Mo−S surfaces, Ni−S pairs are not stable and do not provide for an efficient way for hydrogen activation. These theoretical results are in good agreement with recent experimental studies of H2−D2 exchange reactions.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
Catalyse pour l’énergie et la synthèse de molécules plateforme (CEMOP)
Modélisation et spectroscopies (MODSPEC)
Modélisation et spectroscopies (MODSPEC)
Date de dépôt :
2023-05-30T18:43:45Z
2024-04-26T11:32:43Z
2024-04-26T11:32:43Z