Loads scheduling for demand response in ...
Document type :
Pré-publication ou Document de travail
DOI :
Title :
Loads scheduling for demand response in energy communities
Author(s) :
Sangaré, Mariam [Auteur]
Methods, Algorithms for Operations REsearch [LIRMM | MAORE]
Bourreau, Eric [Auteur]
Methods, Algorithms for Operations REsearch [LIRMM | MAORE]
Fortz, Bernard [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Graphes et Optimisation Mathématique [Bruxelles] [GOM]
Pachurka, Amaury [Auteur]
Beoga
Poss, Michael [Auteur]
Methods, Algorithms for Operations REsearch [LIRMM | MAORE]
Methods, Algorithms for Operations REsearch [LIRMM | MAORE]
Bourreau, Eric [Auteur]
Methods, Algorithms for Operations REsearch [LIRMM | MAORE]
Fortz, Bernard [Auteur]
Integrated Optimization with Complex Structure [INOCS]
Graphes et Optimisation Mathématique [Bruxelles] [GOM]
Pachurka, Amaury [Auteur]
Beoga
Poss, Michael [Auteur]
Methods, Algorithms for Operations REsearch [LIRMM | MAORE]
English keyword(s) :
Energy communities
Loads scheduling
Column generation heuristic
Loads scheduling
Column generation heuristic
HAL domain(s) :
Informatique [cs]/Recherche opérationnelle [cs.RO]
English abstract : [en]
This paper focuses on optimizing the collective self-consumption rate in energy communities by scheduling members' loads. The community remains connected to the public grid and comprises prosumers, traditional consumers, ...
Show more >This paper focuses on optimizing the collective self-consumption rate in energy communities by scheduling members' loads. The community remains connected to the public grid and comprises prosumers, traditional consumers, and distributed storage units. Prosumers can exchange their energy with the public grid or other members. The proposed strategy aims at implementing a Demand Side Management program taking advantage of controllable loads' characteristics. A MILP formulation of the problem allows, on the one hand, to give the optimal planning for electrical devices' operations. On the other hand, it provides optimal solutions for managing the storage units, peer-to-peer exchanges, and interactions with the public grid to minimize the energy flows from the public grid over time. However, this MILP only allows for solving small problem instances. Thus, we develop a column generation-based heuristic for large problem instances. Our numerical experiments based on real data collected in the south of France show that joining an energy community saves money on energy bills and reduces the total energy drawn from the primary grid by at least 15%.Show less >
Show more >This paper focuses on optimizing the collective self-consumption rate in energy communities by scheduling members' loads. The community remains connected to the public grid and comprises prosumers, traditional consumers, and distributed storage units. Prosumers can exchange their energy with the public grid or other members. The proposed strategy aims at implementing a Demand Side Management program taking advantage of controllable loads' characteristics. A MILP formulation of the problem allows, on the one hand, to give the optimal planning for electrical devices' operations. On the other hand, it provides optimal solutions for managing the storage units, peer-to-peer exchanges, and interactions with the public grid to minimize the energy flows from the public grid over time. However, this MILP only allows for solving small problem instances. Thus, we develop a column generation-based heuristic for large problem instances. Our numerical experiments based on real data collected in the south of France show that joining an energy community saves money on energy bills and reduces the total energy drawn from the primary grid by at least 15%.Show less >
Language :
Anglais
Collections :
Source :
Files
- document
- Open access
- Access the document
- main.pdf
- Open access
- Access the document