ZBDS2023: A multi location Zigbee dataset ...
Type de document :
Communication dans un congrès avec actes
Titre :
ZBDS2023: A multi location Zigbee dataset to build innovative IoT Intrusion Detection Systems
Auteur(s) :
Lourme, Olivier [Auteur]
Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - UAR 3380 [IRCICA]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Extra Small Extra Safe [2XS]
Grimaud, Gilles [Auteur]
Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - UAR 3380 [IRCICA]
Extra Small Extra Safe [2XS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Hauspie, Michaël [Auteur]
Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - UAR 3380 [IRCICA]
Extra Small Extra Safe [2XS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]

Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - UAR 3380 [IRCICA]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Extra Small Extra Safe [2XS]
Grimaud, Gilles [Auteur]

Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - UAR 3380 [IRCICA]
Extra Small Extra Safe [2XS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Hauspie, Michaël [Auteur]

Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancée - UAR 3380 [IRCICA]
Extra Small Extra Safe [2XS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Titre de la manifestation scientifique :
19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2023)
Ville :
Montréal
Pays :
Canada
Date de début de la manifestation scientifique :
2023-06-21
Titre de la revue :
2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)
Éditeur :
IEEE
Date de publication :
2023-07-26
Mot(s)-clé(s) en anglais :
IoT security
Zigbee
dataset
Intrusion Detection Systems
spoofing attacks
RSSI
Zigbee
dataset
Intrusion Detection Systems
spoofing attacks
RSSI
Discipline(s) HAL :
Informatique [cs]/Cryptographie et sécurité [cs.CR]
Informatique [cs]/Systèmes embarqués
Informatique [cs]/Systèmes embarqués
Résumé en anglais : [en]
The emergence of the Internet of Things (IoT) model featuring different types of wireless networks made of many different constrained devices conducts researchers to face new security challenges to protect these networks. ...
Lire la suite >The emergence of the Internet of Things (IoT) model featuring different types of wireless networks made of many different constrained devices conducts researchers to face new security challenges to protect these networks. Indeed, they need to build and evaluate dedicated monitoring tools and Intrusion Detection Systems (IDSs). To succeed in these goals, quality datasets including benign and under attack situations are necessary for all IoT protocols. However, if we consider for instance the smart-home sub-market dominated by Wi-Fi, Zigbee and BLE, only complete Wi-Fi datasets can easily be found today. To specifically overcome the lack of Zigbee datasets and contribute to the development of related IDSs, this paper presents ZBDS2023, a 10-day realistic Zigbee dataset made publicly available. Fully documented with metadata, it has been collected from a real populated smart home equipped with 10 recent Zigbee lighting devices. Some periods of capture are free of attack, allowing to build normality models, and some include various labelled attacks, enabling the evaluation of different intrusion detection strategies. Also, as an original second contribution, each emitted frame is captured by one to four demodulating passive probes distributed in the house. Besides providing redundancy concerning MAC layer data, the corresponding values of Received Signal Strength Indicator (RSSI) have also been made available. Being a physical feature, RSSI cannot be easily impersonated and as such, it is a priori a good candidate for participating in fingerprints feeding spoofing detection systems. Moreover, its extraction is uncostly and available in many wireless technologies. However, exploitation of RSSI time series is not trivial, especially in populated buildings. A third contribution using our dataset evaluates a naive attack detection system to serve as a baseline for future works.Lire moins >
Lire la suite >The emergence of the Internet of Things (IoT) model featuring different types of wireless networks made of many different constrained devices conducts researchers to face new security challenges to protect these networks. Indeed, they need to build and evaluate dedicated monitoring tools and Intrusion Detection Systems (IDSs). To succeed in these goals, quality datasets including benign and under attack situations are necessary for all IoT protocols. However, if we consider for instance the smart-home sub-market dominated by Wi-Fi, Zigbee and BLE, only complete Wi-Fi datasets can easily be found today. To specifically overcome the lack of Zigbee datasets and contribute to the development of related IDSs, this paper presents ZBDS2023, a 10-day realistic Zigbee dataset made publicly available. Fully documented with metadata, it has been collected from a real populated smart home equipped with 10 recent Zigbee lighting devices. Some periods of capture are free of attack, allowing to build normality models, and some include various labelled attacks, enabling the evaluation of different intrusion detection strategies. Also, as an original second contribution, each emitted frame is captured by one to four demodulating passive probes distributed in the house. Besides providing redundancy concerning MAC layer data, the corresponding values of Received Signal Strength Indicator (RSSI) have also been made available. Being a physical feature, RSSI cannot be easily impersonated and as such, it is a priori a good candidate for participating in fingerprints feeding spoofing detection systems. Moreover, its extraction is uncostly and available in many wireless technologies. However, exploitation of RSSI time series is not trivial, especially in populated buildings. A third contribution using our dataset evaluates a naive attack detection system to serve as a baseline for future works.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- LOURME_Zigbee_dataset_WiMob_2023.pdf
- Accès libre
- Accéder au document