Capillary-driven horseshoe vortex forming ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Capillary-driven horseshoe vortex forming around a micro-pillar
Auteur(s) :
Ozawa, K. [Auteur]
Tokyo University of Science [Tokyo]
Nakamura, H. [Auteur]
Tokyo University of Science [Tokyo]
University of Arkansas [Fayetteville]
Shimamura, K. [Auteur]
Tokyo University of Science [Tokyo]
Dietze, G.F. [Auteur]
Fluides, automatique, systèmes thermiques [FAST]
Yoshikawa, H.N. [Auteur]
Université Côte d'Azur [UniCA]
Zoueshtiagh, Farzam [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Kurose, K. [Auteur]
Tokyo University of Science [Tokyo]
Mu, L. [Auteur]
Dalian University of Technology
China University of Petroleum
Ueno, I. [Auteur correspondant]
Tokyo University of Science [Tokyo]
Tokyo University of Science [Tokyo]
Nakamura, H. [Auteur]
Tokyo University of Science [Tokyo]
University of Arkansas [Fayetteville]
Shimamura, K. [Auteur]
Tokyo University of Science [Tokyo]
Dietze, G.F. [Auteur]
Fluides, automatique, systèmes thermiques [FAST]
Yoshikawa, H.N. [Auteur]
Université Côte d'Azur [UniCA]
Zoueshtiagh, Farzam [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Acoustique Impulsionnelle & Magnéto-Acoustique Non linéaire - Fluides, Interfaces Liquides & Micro-Systèmes - IEMN [AIMAN-FILMS - IEMN]
Kurose, K. [Auteur]
Tokyo University of Science [Tokyo]
Mu, L. [Auteur]
Dalian University of Technology
China University of Petroleum
Ueno, I. [Auteur correspondant]
Tokyo University of Science [Tokyo]
Titre de la revue :
Journal of Colloid and Interface Science
Pagination :
227-234
Éditeur :
Elsevier
Date de publication :
2023
ISSN :
0021-9797
Mot(s)-clé(s) en anglais :
horseshoe vortex
wetting
meniscus
capillarity
micropilla
wetting
meniscus
capillarity
micropilla
Discipline(s) HAL :
Physique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
Résumé en anglais : [en]
Hypothesis: Horseshoe vortices are known to emerge around large-scale obstacles, such as bridge pillars, due to an inertia-driven adverse pressure gradient forming on the upstream-side of the obstacle. We contend that a ...
Lire la suite >Hypothesis: Horseshoe vortices are known to emerge around large-scale obstacles, such as bridge pillars, due to an inertia-driven adverse pressure gradient forming on the upstream-side of the obstacle. We contend that a similar flow structure can arise in thin-film Stokes flow around micro-obstacles, such as used in textured surfaces to improve wettability. This could be exploited to enhance mixing in microfluidic devices, typically limited to creeping-flow regimes.Experiments: Numerical simulations based on the Navier–Stokes equations are carried out to elucidate the flow structure associated with the wetting dynamics of a liquid film spreading around a 50 μm diameter micro-pillar. The employed multiphase solver, which is based on the volume of fluid method, accurately reproduces the wetting dynamics observed in current and previous (Mu et al., Langmuir, 2019) experiments.Findings: The flow structure within the liquid meniscus forming at the foot of the micro-pillar evinces a horseshoe vortex wrapping around the obstacle, notwithstanding that the Reynolds number in our system is extremely low. Here, the adverse pressure gradient driving flow reversal near the bounding wall is caused by capillarity instead of inertia. The horseshoe vortex is entangled with other vortical structures, leading to an intricate flow system with high-potential mixing capabilities.Lire moins >
Lire la suite >Hypothesis: Horseshoe vortices are known to emerge around large-scale obstacles, such as bridge pillars, due to an inertia-driven adverse pressure gradient forming on the upstream-side of the obstacle. We contend that a similar flow structure can arise in thin-film Stokes flow around micro-obstacles, such as used in textured surfaces to improve wettability. This could be exploited to enhance mixing in microfluidic devices, typically limited to creeping-flow regimes.Experiments: Numerical simulations based on the Navier–Stokes equations are carried out to elucidate the flow structure associated with the wetting dynamics of a liquid film spreading around a 50 μm diameter micro-pillar. The employed multiphase solver, which is based on the volume of fluid method, accurately reproduces the wetting dynamics observed in current and previous (Mu et al., Langmuir, 2019) experiments.Findings: The flow structure within the liquid meniscus forming at the foot of the micro-pillar evinces a horseshoe vortex wrapping around the obstacle, notwithstanding that the Reynolds number in our system is extremely low. Here, the adverse pressure gradient driving flow reversal near the bounding wall is caused by capillarity instead of inertia. The horseshoe vortex is entangled with other vortical structures, leading to an intricate flow system with high-potential mixing capabilities.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Ozawa_JCIS_2023hal.pdf
- Accès libre
- Accéder au document