Functional Role of Metal Center and Doping ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Functional Role of Metal Center and Doping on Tuning the Electrocatalytic Oxygen Evolution Activity of BioMIL-1: Experimental and Theoretical Approaches
Auteur(s) :
Amiri, Mandana [Auteur]
University of Mohaghegh Ardabili
Bezaatpour, Abolfazl [Auteur]
Ghiasi, Mina [Auteur]
Alzahra University
Vocke, Heinrich [Auteur]
Szunerits, Sabine [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Khodayari, Ali [Auteur]
Boukherroub, Rabah [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Wark, Michael [Auteur correspondant]
Ruhr University Bochum = Ruhr-Universität Bochum [RUB]
Carl Von Ossietzky Universität Oldenburg = Carl von Ossietzky University of Oldenburg [OFFIS]
University of Mohaghegh Ardabili
Bezaatpour, Abolfazl [Auteur]
Ghiasi, Mina [Auteur]
Alzahra University
Vocke, Heinrich [Auteur]
Szunerits, Sabine [Auteur]

NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Khodayari, Ali [Auteur]
Boukherroub, Rabah [Auteur]

NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Wark, Michael [Auteur correspondant]
Ruhr University Bochum = Ruhr-Universität Bochum [RUB]
Carl Von Ossietzky Universität Oldenburg = Carl von Ossietzky University of Oldenburg [OFFIS]
Titre de la revue :
ACS Applied Energy Materials
Pagination :
8749–8758
Éditeur :
ACS
Date de publication :
2023-09-11
ISSN :
2574-0962
Mot(s)-clé(s) en anglais :
metal−organic framework
nicotinic acid
oxygen evolution reaction
bimetal electrocatalyst
nicotinic acid
oxygen evolution reaction
bimetal electrocatalyst
Discipline(s) HAL :
Physique [physics]
Sciences de l'ingénieur [physics]
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
To achieve high-efficiency energy conversion and storage technologies, the design and fabrication of high-performance electrocatalysts and an understanding of their catalytic mechanism are critical. In this study, the ...
Lire la suite >To achieve high-efficiency energy conversion and storage technologies, the design and fabrication of high-performance electrocatalysts and an understanding of their catalytic mechanism are critical. In this study, the effect of different metal centers (Co, Ni, Fe, and Cu) on the morphology, structure, and electrocatalytic activity of metal–organic frameworks with nicotinic acid as a linker (Bio-MOFs) on the oxygen evolution reaction (OER) in 0.1 KOH was investigated. In addition, the influence of the second metal on OER was studied. It could be shown that due to the highly exposed bimetal centers and the well-designed architecture of the cobalt–iron (Co–Fe)-based bimetallic–organic framework [BioMIL-(Co–Fe)], the OER showed a low overpotential of 275 mV (10 mA cm–2) and 350 mV (100 mA cm–2), respectively, with a high turnover frequency value of 0.23 s–1 at an overpotential of 320 mV. The presented electrocatalyst creates an emerging class of materials for electrocatalytic applications.Lire moins >
Lire la suite >To achieve high-efficiency energy conversion and storage technologies, the design and fabrication of high-performance electrocatalysts and an understanding of their catalytic mechanism are critical. In this study, the effect of different metal centers (Co, Ni, Fe, and Cu) on the morphology, structure, and electrocatalytic activity of metal–organic frameworks with nicotinic acid as a linker (Bio-MOFs) on the oxygen evolution reaction (OER) in 0.1 KOH was investigated. In addition, the influence of the second metal on OER was studied. It could be shown that due to the highly exposed bimetal centers and the well-designed architecture of the cobalt–iron (Co–Fe)-based bimetallic–organic framework [BioMIL-(Co–Fe)], the OER showed a low overpotential of 275 mV (10 mA cm–2) and 350 mV (100 mA cm–2), respectively, with a high turnover frequency value of 0.23 s–1 at an overpotential of 320 mV. The presented electrocatalyst creates an emerging class of materials for electrocatalytic applications.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :