Machine learning in marine ecology: an ...
Document type :
Compte-rendu et recension critique d'ouvrage
DOI :
Permalink :
Title :
Machine learning in marine ecology: an overview of techniques and applications
Author(s) :
Rubbens, Peter [Auteur]
Brodie, Stephanie [Auteur]
Cordier, Tristan [Auteur]
Destro Barcellos, Diogo [Auteur]
Devos, Paul [Auteur]
Fernandes-Salvador, Jose [Auteur]
Fincham, Jennifer [Auteur]
Gomes, Alessandra [Auteur]
Handegard, Nils Olav [Auteur]
Howell, Kerry [Auteur]
Jamet, Cédric [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Kartveit, Kyrre Heldal [Auteur]
Moustahfid, Hassan [Auteur]
Parcerisas, Clea [Auteur]
Politikos, Dimitris [Auteur]
Sauzède, Raphaëlle [Auteur]
Sokolova, Maria [Auteur]
Uusitalo, Laura [Auteur]
van den Bulcke, Laure [Auteur]
van Helmond, Aloysius [Auteur]
Watson, Jordan [Auteur]
Welch, Heather [Auteur]
Beltran-Perez, Oscar [Auteur]
Chaffron, Samuel [Auteur]
Greenberg, David [Auteur]
Kühn, Bernhard [Auteur]
Kiko, Rainer [Auteur]
Lo, Madiop [Auteur]
Lopes, Rubens [Auteur]
Möller, Klas Ove [Auteur]
Michaels, William [Auteur]
Pala, Ahmet [Auteur]
Romagnan, Jean-Baptiste [Auteur]
Schuchert, Pia [Auteur]
Seydi, Vahid [Auteur]
Villasante, Sebastian [Auteur]
Malde, Ketil [Auteur]
Irisson, Jean-Olivier [Auteur]
Laboratoire d'océanographie de Villefranche [LOV]
Brodie, Stephanie [Auteur]
Cordier, Tristan [Auteur]
Destro Barcellos, Diogo [Auteur]
Devos, Paul [Auteur]
Fernandes-Salvador, Jose [Auteur]
Fincham, Jennifer [Auteur]
Gomes, Alessandra [Auteur]
Handegard, Nils Olav [Auteur]
Howell, Kerry [Auteur]
Jamet, Cédric [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Kartveit, Kyrre Heldal [Auteur]
Moustahfid, Hassan [Auteur]
Parcerisas, Clea [Auteur]
Politikos, Dimitris [Auteur]
Sauzède, Raphaëlle [Auteur]
Sokolova, Maria [Auteur]
Uusitalo, Laura [Auteur]
van den Bulcke, Laure [Auteur]
van Helmond, Aloysius [Auteur]
Watson, Jordan [Auteur]
Welch, Heather [Auteur]
Beltran-Perez, Oscar [Auteur]
Chaffron, Samuel [Auteur]
Greenberg, David [Auteur]
Kühn, Bernhard [Auteur]
Kiko, Rainer [Auteur]
Lo, Madiop [Auteur]
Lopes, Rubens [Auteur]
Möller, Klas Ove [Auteur]
Michaels, William [Auteur]
Pala, Ahmet [Auteur]
Romagnan, Jean-Baptiste [Auteur]
Schuchert, Pia [Auteur]
Seydi, Vahid [Auteur]
Villasante, Sebastian [Auteur]
Malde, Ketil [Auteur]
Irisson, Jean-Olivier [Auteur]
Laboratoire d'océanographie de Villefranche [LOV]
Journal title :
ICES JOURNAL OF MARINE SCIENCE
Pages :
1829-1853
Publisher :
Oxford University Press (OUP)
Publication date :
2023-09-26
ISSN :
1054-3139
HAL domain(s) :
Planète et Univers [physics]/Océan, Atmosphère
English abstract : [en]
Abstract Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across ...
Show more >Abstract Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of ∼1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets.Show less >
Show more >Abstract Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of ∼1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets.Show less >
Language :
Anglais
Source :
Submission date :
2023-10-25T04:22:14Z
Files
- document
- Open access
- Access the document
- Rubbens_ICES_23.pdf
- Open access
- Access the document