Seasonality and competition select for ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Seasonality and competition select for variable germination behavior in perennials
Auteur(s) :
ten Brink, Hanna [Auteur]
Haaland, Thomas [Auteur]
Massol, Francois [Auteur]
Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Opedal, Øystein [Auteur]
Haaland, Thomas [Auteur]
Massol, Francois [Auteur]

Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 [CIIL]
Opedal, Øystein [Auteur]
Titre de la revue :
Evolution - International Journal of Organic Evolution
Pagination :
1791-1805
Éditeur :
Wiley
Date de publication :
2023-08-01
ISSN :
0014-3820
Mot(s)-clé(s) en anglais :
dormancy competition bet-hedging phenology seed size environmental variation
dormancy
competition
bet-hedging
phenology
seed size
environmental variation
dormancy
competition
bet-hedging
phenology
seed size
environmental variation
Discipline(s) HAL :
Sciences du Vivant [q-bio]/Biodiversité/Evolution [q-bio.PE]
Résumé en anglais : [en]
The occurrence of within-population variation in germination behavior and associated traits such as seed size has long fascinated evolutionary ecologists. In annuals, unpredictable environments are known to select for ...
Lire la suite >The occurrence of within-population variation in germination behavior and associated traits such as seed size has long fascinated evolutionary ecologists. In annuals, unpredictable environments are known to select for bet-hedging strategies causing variation in dormancy duration and germination strategies. Variation in germination timing and associated traits is also commonly observed in perennials and often tracks gradients of environmental predictability. Although bet-hedging is thought to occur less frequently in long-lived organisms, these observations suggest a role of bet-hedging strategies in perennials occupying unpredictable environments. We use complementary analytical and evolutionary simulation models of within-individual variation in germination behavior in seasonal environments to show how bet-hedging interacts with fluctuating selection, life-history traits, and competitive asymmetries among germination strategies. We reveal substantial scope for bet-hedging to produce variation in germination behavior in long-lived plants, when “false starts” to the growing season results in either competitive advantages or increased mortality risk for alternative germination strategies. Additionally, we find that lowering adult survival may, in contrast to classic bet-hedging theory, result in less spreading of germination by decreasing density-dependent competition. These models extend insights from bet-hedging theory to perennials and explore how competitive communities may be affected by ongoing changes in climate and seasonality patterns.Lire moins >
Lire la suite >The occurrence of within-population variation in germination behavior and associated traits such as seed size has long fascinated evolutionary ecologists. In annuals, unpredictable environments are known to select for bet-hedging strategies causing variation in dormancy duration and germination strategies. Variation in germination timing and associated traits is also commonly observed in perennials and often tracks gradients of environmental predictability. Although bet-hedging is thought to occur less frequently in long-lived organisms, these observations suggest a role of bet-hedging strategies in perennials occupying unpredictable environments. We use complementary analytical and evolutionary simulation models of within-individual variation in germination behavior in seasonal environments to show how bet-hedging interacts with fluctuating selection, life-history traits, and competitive asymmetries among germination strategies. We reveal substantial scope for bet-hedging to produce variation in germination behavior in long-lived plants, when “false starts” to the growing season results in either competitive advantages or increased mortality risk for alternative germination strategies. Additionally, we find that lowering adult survival may, in contrast to classic bet-hedging theory, result in less spreading of germination by decreasing density-dependent competition. These models extend insights from bet-hedging theory to perennials and explore how competitive communities may be affected by ongoing changes in climate and seasonality patterns.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- qpad089.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- qpad089.pdf
- Accès libre
- Accéder au document