Regularity at infinity of real mappings ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Regularity at infinity of real mappings and a Morse-Sard theorem
Auteur(s) :
Dias, L. R. G. [Auteur]
Instituto de Ciências Mathemàticas e de Computação [São Carlos] [ICMC-USP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ruas, M. A. S. [Auteur]
Instituto de Ciências Mathemàticas e de Computação [São Carlos] [ICMC-USP]
Tibar, M. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Instituto de Ciências Mathemàticas e de Computação [São Carlos] [ICMC-USP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ruas, M. A. S. [Auteur]
Instituto de Ciências Mathemàticas e de Computação [São Carlos] [ICMC-USP]
Tibar, M. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
J. Topology
Pagination :
323-340
Date de publication :
2012-05-02
Mot(s)-clé(s) en anglais :
Morse-Sard theorem
equisingularity
atypical values
fibration at infinity
regularity at infinity
regularity at infinity.
equisingularity
atypical values
fibration at infinity
regularity at infinity
regularity at infinity.
Discipline(s) HAL :
Mathématiques [math]/Géométrie algébrique [math.AG]
Résumé en anglais : [en]
We prove a new Morse-Sard type theorem for the asymptotic critical values of semi-algebraic mappings and a new fibration theorem at infinity for $C^2$ mappings. We show the equivalence of three different types of regularity ...
Lire la suite >We prove a new Morse-Sard type theorem for the asymptotic critical values of semi-algebraic mappings and a new fibration theorem at infinity for $C^2$ mappings. We show the equivalence of three different types of regularity conditions which have been used in the literature in order to control the asymptotic behaviour of mappings. The central role of our picture is played by the $t$-regularity and its bridge toward the $\rho$-regularity which implies topological triviality at infinity.Lire moins >
Lire la suite >We prove a new Morse-Sard type theorem for the asymptotic critical values of semi-algebraic mappings and a new fibration theorem at infinity for $C^2$ mappings. We show the equivalence of three different types of regularity conditions which have been used in the literature in order to control the asymptotic behaviour of mappings. The central role of our picture is played by the $t$-regularity and its bridge toward the $\rho$-regularity which implies topological triviality at infinity.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- 1103.5715
- Accès libre
- Accéder au document