A posteriori error estimator based on ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods
Auteur(s) :
Creusé, Emmanuel [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Nicaise, Serge [Auteur]
Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 [LAMAV]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Nicaise, Serge [Auteur]
Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 [LAMAV]
Titre de la revue :
Journal of Computational and Applied Mathematics
Pagination :
2903-2915
Éditeur :
Elsevier
Date de publication :
2010-09-15
ISSN :
0377-0427
Mot(s)-clé(s) en anglais :
A posteriori estimator
Discontinuous Galerkin finite elements
Discontinuous Galerkin finite elements
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
We consider some (anisotropic and piecewise constant) diffusion problems in domains of R^2, approximated by a discontinuous Galerkin method with polynomials of any fixed degree. We propose an a posteriori error estimator ...
Lire la suite >We consider some (anisotropic and piecewise constant) diffusion problems in domains of R^2, approximated by a discontinuous Galerkin method with polynomials of any fixed degree. We propose an a posteriori error estimator based on gradient recovery by averaging. It is shown that this estimator gives rise to an upper bound where the constant is one up to some additional terms that guarantee reliability. The lower bound is also established. Moreover these additional terms are negligible when the recovered gradient is super convergent. The reliability and efficiency of the proposed estimator in confirmed by some numerical tests.Lire moins >
Lire la suite >We consider some (anisotropic and piecewise constant) diffusion problems in domains of R^2, approximated by a discontinuous Galerkin method with polynomials of any fixed degree. We propose an a posteriori error estimator based on gradient recovery by averaging. It is shown that this estimator gives rise to an upper bound where the constant is one up to some additional terms that guarantee reliability. The lower bound is also established. Moreover these additional terms are negligible when the recovered gradient is super convergent. The reliability and efficiency of the proposed estimator in confirmed by some numerical tests.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- CREUSE_NICAISE-Revised.pdf
- Accès libre
- Accéder au document
- j.cam.2010.03.027
- Accès libre
- Accéder au document