Mathematical derivation of a rubber-like ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Mathematical derivation of a rubber-like stored energy functional
Auteur(s) :
Alicandro, Roberto [Auteur]
Dipartimento di Automazione Elettromagnetismo Ingegneria dell'Informazione Matematica Industriale [DAEIMI]
Cicalese, Marco [Auteur]
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”
Gloria, Antoine [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Dipartimento di Automazione Elettromagnetismo Ingegneria dell'Informazione Matematica Industriale [DAEIMI]
Cicalese, Marco [Auteur]
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”
Gloria, Antoine [Auteur]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Titre de la revue :
Comptes rendus de l'Académie des sciences. Série I, Mathématique
Pagination :
479-482
Éditeur :
Elsevier
Date de publication :
2007
ISSN :
0764-4442
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Physique mathématique [math-ph]
Résumé en anglais : [en]
In this note, we consider a stochastic network of interacting points to which we associate an energy. We study the variational convergence of such an energy when the typical distance of the network goes to zero. We prove ...
Lire la suite >In this note, we consider a stochastic network of interacting points to which we associate an energy. We study the variational convergence of such an energy when the typical distance of the network goes to zero. We prove that the limit energy can be written as an integral functional, whose energy density is deterministic, hyperelastic and frame-invariant. This derivation allows us in particular to obtain a continuous energy density associated to cross-linked polymer networks.Lire moins >
Lire la suite >In this note, we consider a stochastic network of interacting points to which we associate an energy. We study the variational convergence of such an energy when the typical distance of the network goes to zero. We prove that the limit energy can be written as an integral functional, whose energy density is deterministic, hyperelastic and frame-invariant. This derivation allows us in particular to obtain a continuous energy density associated to cross-linked polymer networks.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- ACG-07.pdf
- Accès libre
- Accéder au document
- ACG-07.pdf
- Accès libre
- Accéder au document