An asymptotic preserving scheme based on ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
An asymptotic preserving scheme based on a new formulation for NLS in the semiclassical limit
Auteur(s) :
Besse, Christophe [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Carles, Rémi [Auteur]
Institut de Mathématiques et de Modélisation de Montpellier [I3M]
Méhats, Florian [Auteur]
Invariant Preserving SOlvers [IPSO]
Institut de Recherche Mathématique de Rennes [IRMAR]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
SImulations and Modeling for PArticles and Fluids [SIMPAF]
Carles, Rémi [Auteur]
Institut de Mathématiques et de Modélisation de Montpellier [I3M]
Méhats, Florian [Auteur]
Invariant Preserving SOlvers [IPSO]
Institut de Recherche Mathématique de Rennes [IRMAR]
Titre de la revue :
Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal
Pagination :
1228-1260
Éditeur :
Society for Industrial and Applied Mathematics
Date de publication :
2013
ISSN :
1540-3459
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We consider the semiclassical limit for the nonlinear Schrodinger equation. We introduce a phase/amplitude representation given by a system similar to the hydrodynamical formulation, whose novelty consists in including ...
Lire la suite >We consider the semiclassical limit for the nonlinear Schrodinger equation. We introduce a phase/amplitude representation given by a system similar to the hydrodynamical formulation, whose novelty consists in including some asymptotically vanishing viscosity. We prove that the system is always locally well-posed in a class of Sobolev spaces, and globally well-posed for a fixed positive Planck constant in the one-dimensional case. We propose a second order numerical scheme which is asymptotic preserving. Before singularities appear in the limiting Euler equation, we recover the quadratic physical observables as well as the wave function with mesh size and time step independent of the Planck constant. This approach is also well suited to the linear Schrodinger equation.Lire moins >
Lire la suite >We consider the semiclassical limit for the nonlinear Schrodinger equation. We introduce a phase/amplitude representation given by a system similar to the hydrodynamical formulation, whose novelty consists in including some asymptotically vanishing viscosity. We prove that the system is always locally well-posed in a class of Sobolev spaces, and globally well-posed for a fixed positive Planck constant in the one-dimensional case. We propose a second order numerical scheme which is asymptotic preserving. Before singularities appear in the limiting Euler equation, we recover the quadratic physical observables as well as the wave function with mesh size and time step independent of the Planck constant. This approach is also well suited to the linear Schrodinger equation.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Commentaire :
34 pages, 31 (colored) figures
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- ap.pdf
- Accès libre
- Accéder au document
- 1211.3391
- Accès libre
- Accéder au document