Delocalization of slowly damped eigenmodes ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Delocalization of slowly damped eigenmodes on Anosov manifolds
Auteur(s) :
Titre de la revue :
Communications in Mathematical Physics
Pagination :
555-593
Éditeur :
Springer Verlag
Date de publication :
2012-11-11
ISSN :
0010-3616
Mot(s)-clé(s) en anglais :
damped wave equation
semiclassical measures
Anosov flows
topological pressure
Kolmogorov-Sinai entropy
semiclassical measures
Anosov flows
topological pressure
Kolmogorov-Sinai entropy
Discipline(s) HAL :
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Systèmes dynamiques [math.DS]
Résumé en anglais : [en]
We look at the properties of high frequency eigenmodes for the damped wave equation on a compact manifold with an Anosov geodesic flow. We study eigenmodes with spectral parameters which are asymptotically close enough to ...
Lire la suite >We look at the properties of high frequency eigenmodes for the damped wave equation on a compact manifold with an Anosov geodesic flow. We study eigenmodes with spectral parameters which are asymptotically close enough to the real axis. We prove that such modes cannot be completely localized on subsets satisfying a condition of negative topological pressure. As an application, one can deduce the existence of a ''strip'' of logarithmic size without eigenvalues below the real axis under this dynamical assumption on the set of undamped trajectories.Lire moins >
Lire la suite >We look at the properties of high frequency eigenmodes for the damped wave equation on a compact manifold with an Anosov geodesic flow. We study eigenmodes with spectral parameters which are asymptotically close enough to the real axis. We prove that such modes cannot be completely localized on subsets satisfying a condition of negative topological pressure. As an application, one can deduce the existence of a ''strip'' of logarithmic size without eigenvalues below the real axis under this dynamical assumption on the set of undamped trajectories.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
28 pages; compared with version 1, minor modifications, add two references
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Riviere11.pdf
- Accès libre
- Accéder au document
- 1109.1909
- Accès libre
- Accéder au document