Least squares estimator for the parameter ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Least squares estimator for the parameter of the fractional Ornstein-Uhlenbeck sheet
Auteur(s) :
Clarke de La Cerda, Jorge [Auteur]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Tudor, Ciprian [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Journal of the Korean Statistical Society
Pagination :
341 - 350
Éditeur :
Elsevier
Date de publication :
2012
ISSN :
1226-3192
Mot(s)-clé(s) en anglais :
Multiple Wiener–Itô integrals
Strong consistency
Fractional Brownian sheet
Parameter estimation
Strong consistency
Fractional Brownian sheet
Parameter estimation
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Statistiques [stat]
Statistiques [stat]
Résumé en anglais : [en]
We will study the least square estimator $\widehat{\theta }_{T,S}$ for the drift parameter $\theta$ of the fractional Ornstein-Uhlenbeck sheet which is defined as the solution of the Langevin equation \begin{equation*} ...
Lire la suite >We will study the least square estimator $\widehat{\theta }_{T,S}$ for the drift parameter $\theta$ of the fractional Ornstein-Uhlenbeck sheet which is defined as the solution of the Langevin equation \begin{equation*} X_{t,s}= -\theta \int^{t}_{0} \int^{s}_{0} X_{v,u}dvdu + B^{\alpha, \beta}_{t,s}, \qquad (t,s) \in [0,T]\times [0,S]. \end{equation*} driven by the fractional Brownian sheet $B^{\alpha ,\beta}$ with Hurst parameters $\alpha, \beta$ in $(\frac{1}{2}, \frac{5}{8})$. Using the properties of multiple Wiener-Itô integrals we prove that the estimator is strongly consistent for the parameter $\theta$. In contrast to the one-dimensional case, the estimator $\widehat{\theta}_{T,S}$ is not asymptotically normal.Lire moins >
Lire la suite >We will study the least square estimator $\widehat{\theta }_{T,S}$ for the drift parameter $\theta$ of the fractional Ornstein-Uhlenbeck sheet which is defined as the solution of the Langevin equation \begin{equation*} X_{t,s}= -\theta \int^{t}_{0} \int^{s}_{0} X_{v,u}dvdu + B^{\alpha, \beta}_{t,s}, \qquad (t,s) \in [0,T]\times [0,S]. \end{equation*} driven by the fractional Brownian sheet $B^{\alpha ,\beta}$ with Hurst parameters $\alpha, \beta$ in $(\frac{1}{2}, \frac{5}{8})$. Using the properties of multiple Wiener-Itô integrals we prove that the estimator is strongly consistent for the parameter $\theta$. In contrast to the one-dimensional case, the estimator $\widehat{\theta}_{T,S}$ is not asymptotically normal.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- OU-sheet_ExVer-JKSS.pdf
- Accès libre
- Accéder au document
- 1109.0933
- Accès libre
- Accéder au document