Bifurcation values of mixed polynomials
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Bifurcation values of mixed polynomials
Auteur(s) :
Chen, Ying [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Tibar, Mihai [Auteur correspondant]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Tibar, Mihai [Auteur correspondant]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Math. Research Letters
Pagination :
59-79
Date de publication :
2012-01-20
Discipline(s) HAL :
Mathématiques [math]/Variables complexes [math.CV]
Mathématiques [math]/Géométrie algébrique [math.AG]
Mathématiques [math]/Topologie algébrique [math.AT]
Mathématiques [math]/Géométrie algébrique [math.AG]
Mathématiques [math]/Topologie algébrique [math.AT]
Résumé en anglais : [en]
We study the bifurcation locus $B(f)$ of real polynomials $f: \bR^{2n} \to \bR^2$. We find a semialgebraic approximation of $B(f)$ by using the $\rho$-regularity condition and we compare it to the Sard type theorem by ...
Lire la suite >We study the bifurcation locus $B(f)$ of real polynomials $f: \bR^{2n} \to \bR^2$. We find a semialgebraic approximation of $B(f)$ by using the $\rho$-regularity condition and we compare it to the Sard type theorem by Kurdyka, Orro and Simon. We introduce the Newton boundary at infinity for mixed polynomials and we extend structure results by Kushnirenko and by Némethi and Zaharia, under the Newton non-degeneracy assumption.Lire moins >
Lire la suite >We study the bifurcation locus $B(f)$ of real polynomials $f: \bR^{2n} \to \bR^2$. We find a semialgebraic approximation of $B(f)$ by using the $\rho$-regularity condition and we compare it to the Sard type theorem by Kurdyka, Orro and Simon. We introduce the Newton boundary at infinity for mixed polynomials and we extend structure results by Kushnirenko and by Némethi and Zaharia, under the Newton non-degeneracy assumption.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- 1011.4884
- Accès libre
- Accéder au document