Perfection uniforme pour les échanges ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Perfection uniforme pour les échanges d'intervalles avec ou sans retournements
Auteur(s) :
Titre de la revue :
Annales de l'Institut Fourier
Pagination :
1477-1501
Éditeur :
Association des Annales de l'Institut Fourier
Date de publication :
2022-09-12
ISSN :
0373-0956
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
Let G be the group of all Interval Exchange Transformations. Results of Arnoux-Fathi ([Arn81b]), Sah ([Sah81]) and Vorobets ([Vor17]) state that G 0 the subgroup of G generated by its commutators is simple. In ([Arn81b]), ...
Lire la suite >Let G be the group of all Interval Exchange Transformations. Results of Arnoux-Fathi ([Arn81b]), Sah ([Sah81]) and Vorobets ([Vor17]) state that G 0 the subgroup of G generated by its commutators is simple. In ([Arn81b]), Arnoux proved that the group G of all Interval Exchange Transformations with flips is simple. We establish that every element of G has a commutator length not exceeding 6. Moreover, we give conditions on G that guarantee that the commutator lengths of the elements of G 0 are uniformly bounded, and in this case for any g ∈ G 0 this length is at most 5. As analogous arguments work for the involution length in G, we add an appendix whose purpose is to prove that every element of G has an involution length not exceeding 12.Lire moins >
Lire la suite >Let G be the group of all Interval Exchange Transformations. Results of Arnoux-Fathi ([Arn81b]), Sah ([Sah81]) and Vorobets ([Vor17]) state that G 0 the subgroup of G generated by its commutators is simple. In ([Arn81b]), Arnoux proved that the group G of all Interval Exchange Transformations with flips is simple. We establish that every element of G has a commutator length not exceeding 6. Moreover, we give conditions on G that guarantee that the commutator lengths of the elements of G 0 are uniformly bounded, and in this case for any g ∈ G 0 this length is at most 5. As analogous arguments work for the involution length in G, we add an appendix whose purpose is to prove that every element of G has an involution length not exceeding 12.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- U_perf_SyRev_IET.pdf
- Accès libre
- Accéder au document
- 1910.08923
- Accès libre
- Accéder au document