Exponential mixing of all orders and CLT ...
Type de document :
Pré-publication ou Document de travail
Titre :
Exponential mixing of all orders and CLT for automorphisms of compact Kähler manifolds
Auteur(s) :
Bianchi, Fabrizio [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Dinh, Tien-Cuong [Auteur]
National University of Singapore [NUS]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Dinh, Tien-Cuong [Auteur]
National University of Singapore [NUS]
Mot(s)-clé(s) en anglais :
Automorphism
Exponential Mixing of all orders
Central Limit Theorem
Exponential Mixing of all orders
Central Limit Theorem
Discipline(s) HAL :
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Variables complexes [math.CV]
Mathématiques [math]/Variables complexes [math.CV]
Résumé en anglais : [en]
We consider the unique measure of maximal entropy of an automorphism of a compact Kähler manifold with simple action on cohomology. We show that it is exponentially mixing of all orders with respect to Hölder observables. ...
Lire la suite >We consider the unique measure of maximal entropy of an automorphism of a compact Kähler manifold with simple action on cohomology. We show that it is exponentially mixing of all orders with respect to Hölder observables. It follows that the Central Limit Theorem (CLT) holds for these observables. In particular, our result applies to all automorphisms of compact Kähler surfaces with positive entropy.Lire moins >
Lire la suite >We consider the unique measure of maximal entropy of an automorphism of a compact Kähler manifold with simple action on cohomology. We show that it is exponentially mixing of all orders with respect to Hölder observables. It follows that the Central Limit Theorem (CLT) holds for these observables. In particular, our result applies to all automorphisms of compact Kähler surfaces with positive entropy.Lire moins >
Langue :
Anglais
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- CLT-Automorphisms.pdf
- Accès libre
- Accéder au document
- 2304.13335
- Accès libre
- Accéder au document