Modulational instability in randomly ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Modulational instability in randomly dispersion-managed fiber links
Auteur(s) :
Armaroli, Andrea [Auteur]
Dujardin, Guillaume [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Kudlinski, Alexandre [Auteur]
Mussot, Arnaud [Auteur]
De Bièvre, Stephan [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
Conforti, Matteo [Auteur]
Dujardin, Guillaume [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Kudlinski, Alexandre [Auteur]
Mussot, Arnaud [Auteur]
De Bièvre, Stephan [Auteur]
Systèmes de particules et systèmes dynamiques [Paradyse]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
Conforti, Matteo [Auteur]
Titre de la revue :
Physical Review A
Pagination :
023510
Éditeur :
American Physical Society
Date de publication :
2023-08
ISSN :
2469-9926
Discipline(s) HAL :
Physique [physics]
Résumé en anglais : [en]
We study modulational instability in a dispersion-managed system where the sign of the group-velocity dispersion is changed at uniformly distributed random distances around a reference length. An analytical technique is ...
Lire la suite >We study modulational instability in a dispersion-managed system where the sign of the group-velocity dispersion is changed at uniformly distributed random distances around a reference length. An analytical technique is presented to estimate the instability gain from the linearized nonlinear Schr{\"o}dinger equation, which is also solved numerically. The comparison of numerical and analytical results confirms the validity of our approach. Modulational instability of purely stochastic origin appears. A competition between instability bands of periodic and stochastic origin is also discussed. We find an instability gain comparable to the conventional values found in a homogeneous anomalous dispersion fiber.Lire moins >
Lire la suite >We study modulational instability in a dispersion-managed system where the sign of the group-velocity dispersion is changed at uniformly distributed random distances around a reference length. An analytical technique is presented to estimate the instability gain from the linearized nonlinear Schr{\"o}dinger equation, which is also solved numerically. The comparison of numerical and analytical results confirms the validity of our approach. Modulational instability of purely stochastic origin appears. A competition between instability bands of periodic and stochastic origin is also discussed. We find an instability gain comparable to the conventional values found in a homogeneous anomalous dispersion fiber.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
4 pages, 4 figure
Collections :
Source :
Fichiers
- 2211.16326
- Accès libre
- Accéder au document