Scarred eigenstates for quantum cat maps ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Scarred eigenstates for quantum cat maps of minimal periods
Auteur(s) :
Faure, Frédéric [Auteur]
Institut Fourier [IF ]
Nonnenmacher, Stéphane [Auteur]
Service de Physique Théorique [SPhT]
De Bievre, Stephan [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Institut Fourier [IF ]
Nonnenmacher, Stéphane [Auteur]
Service de Physique Théorique [SPhT]
De Bievre, Stephan [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Communications in Mathematical Physics
Pagination :
449-492
Éditeur :
Springer Verlag
Date de publication :
2003
ISSN :
0010-3616
Discipline(s) HAL :
Mathématiques [math]/Physique mathématique [math-ph]
Physique [physics]/Physique mathématique [math-ph]
Science non linéaire [physics]/Dynamique Chaotique [nlin.CD]
Physique [physics]/Physique mathématique [math-ph]
Science non linéaire [physics]/Dynamique Chaotique [nlin.CD]
Résumé en anglais : [en]
In this paper we construct a sequence of eigenfunctions of the ''quantum Arnold's cat map'' that, in the semiclassical limit, show a strong scarring phenomenon on the periodic orbits of the dynamics. More precisely, those ...
Lire la suite >In this paper we construct a sequence of eigenfunctions of the ''quantum Arnold's cat map'' that, in the semiclassical limit, show a strong scarring phenomenon on the periodic orbits of the dynamics. More precisely, those states have a semiclassical limit measure that is the sum of 1/2 the normalized Lebesgue measure on the torus plus 1/2 the normalized Dirac measure concentrated on any a priori given periodic orbit of the dynamics. It is known (the Schnirelman theorem) that ''most'' sequences of eigenfunctions equidistribute on the torus. The sequences we construct therefore provide an example of an exception to this general rule. Our method of construction and proof exploits the existence of special values of Planck's constant for which the quantum period of the map is relatively ''short'', and a sharp control on the evolution of coherent states up to this time scale. We also provide a pointwise description of these states in phase space, which uncovers their ''hyperbolic'' structure in the vicinity of the fixed points and yields more precise localization estimates.Lire moins >
Lire la suite >In this paper we construct a sequence of eigenfunctions of the ''quantum Arnold's cat map'' that, in the semiclassical limit, show a strong scarring phenomenon on the periodic orbits of the dynamics. More precisely, those states have a semiclassical limit measure that is the sum of 1/2 the normalized Lebesgue measure on the torus plus 1/2 the normalized Dirac measure concentrated on any a priori given periodic orbit of the dynamics. It is known (the Schnirelman theorem) that ''most'' sequences of eigenfunctions equidistribute on the torus. The sequences we construct therefore provide an example of an exception to this general rule. Our method of construction and proof exploits the existence of special values of Planck's constant for which the quantum period of the map is relatively ''short'', and a sharp control on the evolution of coherent states up to this time scale. We also provide a pointwise description of these states in phase space, which uncovers their ''hyperbolic'' structure in the vicinity of the fixed points and yields more precise localization estimates.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
LaTeX, 49 pages, includes 10 figures. I added section 6.6. To be published in Commun. Math. Phys
Collections :
Source :
Fichiers
- 0207060
- Accès libre
- Accéder au document