On the stable Andreadakis problem
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
On the stable Andreadakis problem
Auteur(s) :
Titre de la revue :
Journal of Pure and Applied Algebra
Pagination :
5484-5525
Éditeur :
Elsevier
Date de publication :
2019-12
ISSN :
0022-4049
Mot(s)-clé(s) en anglais :
Automorphisms of free groups
Filtrations on groups
Lie algebras
Johnson morphisms
Free differential calculus
Congruence groups
Filtrations on groups
Lie algebras
Johnson morphisms
Free differential calculus
Congruence groups
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
Let be the free group on n generators. Consider the group of automorphisms of acting trivially on its abelianization. There are two canonical filtrations on : the first one is its lower central series ⁎; the second one is ...
Lire la suite >Let be the free group on n generators. Consider the group of automorphisms of acting trivially on its abelianization. There are two canonical filtrations on : the first one is its lower central series ⁎; the second one is the Andreadakis filtration ⁎, defined from the action on . In this paper, we establish that the canonical morphism between the associated graded Lie rings ⁎ and ⁎ is stably surjective. We then investigate a p-restricted version of the Andreadakis problem. A calculation of the Lie algebra of the classical congruence group is also included.Lire moins >
Lire la suite >Let be the free group on n generators. Consider the group of automorphisms of acting trivially on its abelianization. There are two canonical filtrations on : the first one is its lower central series ⁎; the second one is the Andreadakis filtration ⁎, defined from the action on . In this paper, we establish that the canonical morphism between the associated graded Lie rings ⁎ and ⁎ is stably surjective. We then investigate a p-restricted version of the Andreadakis problem. A calculation of the Lie algebra of the classical congruence group is also included.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- S002240491930101X.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- S002240491930101X.pdf
- Accès libre
- Accéder au document