Meromorphic continuation of Multivariable ...
Type de document :
Pré-publication ou Document de travail
Titre :
Meromorphic continuation of Multivariable Euler product and application
Auteur(s) :
Bhowmik, Gautami [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Essouabri, Driss [Auteur]
Laboratoire de Mathématiques Nicolas Oresme [LMNO]
Lichtin, Ben [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Essouabri, Driss [Auteur]
Laboratoire de Mathématiques Nicolas Oresme [LMNO]
Lichtin, Ben [Auteur]
Mot(s)-clé(s) en anglais :
zeta functions of groups.
several variables zeta functions
Euler product
analytic continuation
Manin's conjecture
Rational points
zeta functions of groups
several variables zeta functions
Euler product
analytic continuation
Manin's conjecture
Rational points
zeta functions of groups
Discipline(s) HAL :
Mathématiques [math]/Théorie des nombres [math.NT]
Résumé en anglais : [en]
This article extends classical one variable results about Euler products defined by integral valued polynomial or analytic functions to several variables. We show there exists a meromorphic continuation up to a presumed ...
Lire la suite >This article extends classical one variable results about Euler products defined by integral valued polynomial or analytic functions to several variables. We show there exists a meromorphic continuation up to a presumed natural boundary, and also give a criterion, a la Estermann-Dahlquist, for the existence of a meromorphic extension to $\C^n.$ Among applications we deduce analytic properties of height zeta functions for toric varieties over $\Q$ and group zeta functions.Lire moins >
Lire la suite >This article extends classical one variable results about Euler products defined by integral valued polynomial or analytic functions to several variables. We show there exists a meromorphic continuation up to a presumed natural boundary, and also give a criterion, a la Estermann-Dahlquist, for the existence of a meromorphic extension to $\C^n.$ Among applications we deduce analytic properties of height zeta functions for toric varieties over $\Q$ and group zeta functions.Lire moins >
Langue :
Anglais
Commentaire :
article soumis
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- eulerprod15fev2005.pdf
- Accès libre
- Accéder au document
- 0502508
- Accès libre
- Accéder au document