ADDITIVE ENERGY OF DENSE SETS OF PRIMES ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
ADDITIVE ENERGY OF DENSE SETS OF PRIMES AND MONOCHROMATIC SUMS
Author(s) :
Ramana, D [Auteur]
Ramaré, Olivier [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Ramaré, Olivier [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Israel Journal of Mathematics
Pages :
955-974
Publisher :
Springer
Publication date :
2014
ISSN :
0021-2172
HAL domain(s) :
Mathématiques [math]/Théorie des nombres [math.NT]
English abstract : [en]
When $K \ge 1$ is an integer and $S$ is a set of prime numbers in the interval $(N/2 , N ]$ with $|S| \ge\pi^* (N)/K$, where $\pi^* (N)$ is the number of primes in this interval, we obtain an upper bound for the additive ...
Show more >When $K \ge 1$ is an integer and $S$ is a set of prime numbers in the interval $(N/2 , N ]$ with $|S| \ge\pi^* (N)/K$, where $\pi^* (N)$ is the number of primes in this interval, we obtain an upper bound for the additive energy of $S$, which is the number of quadruples $(x_1 , x_2 , x_3 , x_4)$ in $S^4$ satisfying $x_1 + x_2 = x_3 + x_4$. We obtain this bound by a variant of a method of Ramaré and I. Ruzsa. Taken together with an argument due to N. Hegyvári and F. Hennecart this bound implies that when the sequence of prime numbers is coloured with $K$ colours, every sufficiently large integer can be written as a sum of no more than $CK \log \log 4K$ prime numbers, all of the same colour, where $C$ is an absolute constant. This assertion is optimal upto the value of C and answers a question of A. Sárközy.Show less >
Show more >When $K \ge 1$ is an integer and $S$ is a set of prime numbers in the interval $(N/2 , N ]$ with $|S| \ge\pi^* (N)/K$, where $\pi^* (N)$ is the number of primes in this interval, we obtain an upper bound for the additive energy of $S$, which is the number of quadruples $(x_1 , x_2 , x_3 , x_4)$ in $S^4$ satisfying $x_1 + x_2 = x_3 + x_4$. We obtain this bound by a variant of a method of Ramaré and I. Ruzsa. Taken together with an argument due to N. Hegyvári and F. Hennecart this bound implies that when the sequence of prime numbers is coloured with $K$ colours, every sufficiently large integer can be written as a sum of no more than $CK \log \log 4K$ prime numbers, all of the same colour, where $C$ is an absolute constant. This assertion is optimal upto the value of C and answers a question of A. Sárközy.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- dense_primes_israel.pdf
- Open access
- Access the document