On long $\kappa$-tuples with few prime factors
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
On long $\kappa$-tuples with few prime factors
Auteur(s) :
Ramaré, Olivier [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Proceedings of the London Mathematical Society
Pagination :
158-196
Éditeur :
London Mathematical Society
Date de publication :
2012-01
ISSN :
0024-6115
Discipline(s) HAL :
Mathématiques [math]/Théorie des nombres [math.NT]
Résumé en anglais : [en]
We prove that there are infinitely many integers n such that the total number of prime factors of $(n + h_1) \cdots (n + h_\kappa)$ is exactly $(1 + o(1))\kappa\log\kappa$. Our result even ensures us that these prime factors ...
Lire la suite >We prove that there are infinitely many integers n such that the total number of prime factors of $(n + h_1) \cdots (n + h_\kappa)$ is exactly $(1 + o(1))\kappa\log\kappa$. Our result even ensures us that these prime factors are fairly evenly distributed among every factors $n + h_i$.Lire moins >
Lire la suite >We prove that there are infinitely many integers n such that the total number of prime factors of $(n + h_1) \cdots (n + h_\kappa)$ is exactly $(1 + o(1))\kappa\log\kappa$. Our result even ensures us that these prime factors are fairly evenly distributed among every factors $n + h_i$.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- HRIW-PLMS2.pdf
- Accès libre
- Accéder au document