Explicit upper bounds for the remainder ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Explicit upper bounds for the remainder term in the divisor problem
Auteur(s) :
Berkane, D. [Auteur]
Bordellès, O. [Auteur]
Ramaré, Olivier [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Bordellès, O. [Auteur]
Ramaré, Olivier [Auteur]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Mathematics of Computation
Pagination :
1025-1051
Éditeur :
American Mathematical Society
Date de publication :
2012-03-01
ISSN :
0025-5718
Discipline(s) HAL :
Mathématiques [math]/Théorie des nombres [math.NT]
Résumé en anglais : [en]
We first report on computations made using the GP/PARI package that show that the error term ∆(x) in the divisor problem is $= \mathscr{M} (x, 4) + O^* (0.35 x^{1/4} \log x)$ when $x$ ranges $[1 081 080, 10^{10} ]$, where ...
Lire la suite >We first report on computations made using the GP/PARI package that show that the error term ∆(x) in the divisor problem is $= \mathscr{M} (x, 4) + O^* (0.35 x^{1/4} \log x)$ when $x$ ranges $[1 081 080, 10^{10} ]$, where $\mathscr{M }(x, 4)$ is a smooth approximation. The remaining part (and in fact most) of the paper is devoted to showing that $|\Delta(x)| \le 0.397 x^{1/2}$ when $x \ge 5 560$ and that $|\Delta(x)| \le 0.764 x^{1/3}\log x$ when $x\ge 9 995$. Several other bounds are also proposed. We use this results to get an improved upper bound for the class number of a quadractic imaginary field and to get a better remainder term for averages of multiplicative functions that are close to the divisor function. We finally formulate a positivity conjecture concerningLire moins >
Lire la suite >We first report on computations made using the GP/PARI package that show that the error term ∆(x) in the divisor problem is $= \mathscr{M} (x, 4) + O^* (0.35 x^{1/4} \log x)$ when $x$ ranges $[1 081 080, 10^{10} ]$, where $\mathscr{M }(x, 4)$ is a smooth approximation. The remaining part (and in fact most) of the paper is devoted to showing that $|\Delta(x)| \le 0.397 x^{1/2}$ when $x \ge 5 560$ and that $|\Delta(x)| \le 0.764 x^{1/3}\log x$ when $x\ge 9 995$. Several other bounds are also proposed. We use this results to get an improved upper bound for the class number of a quadractic imaginary field and to get a better remainder term for averages of multiplicative functions that are close to the divisor function. We finally formulate a positivity conjecture concerningLire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Divisors-MCOM-2.pdf
- Accès libre
- Accéder au document
- S0025-5718-2011-02535-4.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- Divisors-MCOM-2.pdf
- Accès libre
- Accéder au document