Comparing $L(s, \chi)$ with its truncated ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Comparing $L(s, \chi)$ with its truncated Euler product and generalization
Author(s) :
Ramaré, Olivier [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Centre National de la Recherche Scientifique [CNRS]
Journal title :
Functiones et Approximatio Commentarii Mathematici
Pages :
145-151
Publisher :
Poznań : Wydawnictwo Naukowe Uniwersytet im. Adama Mickiewicza
Publication date :
2010
ISSN :
0208-6573
HAL domain(s) :
Mathématiques [math]/Théorie des nombres [math.NT]
English abstract : [en]
We show that any $L$-function attached to a non-exceptionnal Hecke Grossencharakter $\Xi$ may be approximated by a truncated Euler product when $s$ lies near the line $s = 1$. This leads to some refined bounds on $L(s, \Xi)$.We show that any $L$-function attached to a non-exceptionnal Hecke Grossencharakter $\Xi$ may be approximated by a truncated Euler product when $s$ lies near the line $s = 1$. This leads to some refined bounds on $L(s, \Xi)$.Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- EulerProduct.pdf
- Open access
- Access the document