A variational finite volume scheme for ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
A variational finite volume scheme for Wasserstein gradient flows
Auteur(s) :
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Gallouët, Thomas [Auteur]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Todeschi, Gabriele [Auteur]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Reliable numerical approximations of dissipative systems [RAPSODI]
Gallouët, Thomas [Auteur]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Todeschi, Gabriele [Auteur]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Titre de la revue :
Numerische Mathematik
Pagination :
pp 437 - 480
Éditeur :
Springer Verlag
Date de publication :
2020
ISSN :
0029-599X
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We propose a variational finite volume scheme to approximate the solutions to Wasserstein gradient flows. The time discretization is based on an implicit linearization of the Wasserstein distance expressed thanks to ...
Lire la suite >We propose a variational finite volume scheme to approximate the solutions to Wasserstein gradient flows. The time discretization is based on an implicit linearization of the Wasserstein distance expressed thanks to Benamou-Brenier formula, whereas space discretization relies on upstream mobility two-point flux approximation finite volumes. Our scheme is based on a first discretize then optimize approach in order to preserve the variational structure of the continuous model at the discrete level. Our scheme can be applied to a wide range of energies, guarantees non-negativity of the discrete solutions as well as decay of the energy. We show that our scheme admits a unique solution whatever the convex energy involved in the continuous problem , and we prove its convergence in the case of the linear Fokker-Planck equation with positive initial density. Numerical illustrations show that it is first order accurate in both time and space, and robust with respect to both the energy and the initial profile.Lire moins >
Lire la suite >We propose a variational finite volume scheme to approximate the solutions to Wasserstein gradient flows. The time discretization is based on an implicit linearization of the Wasserstein distance expressed thanks to Benamou-Brenier formula, whereas space discretization relies on upstream mobility two-point flux approximation finite volumes. Our scheme is based on a first discretize then optimize approach in order to preserve the variational structure of the continuous model at the discrete level. Our scheme can be applied to a wide range of energies, guarantees non-negativity of the discrete solutions as well as decay of the energy. We show that our scheme admits a unique solution whatever the convex energy involved in the continuous problem , and we prove its convergence in the case of the linear Fokker-Planck equation with positive initial density. Numerical illustrations show that it is first order accurate in both time and space, and robust with respect to both the energy and the initial profile.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- CGT_LJKO.pdf
- Accès libre
- Accéder au document
- s00211-020-01153-9.pdf
- Accès libre
- Accéder au document