On four numerical schemes for a unipolar ...
Type de document :
Communication dans un congrès avec actes
Titre :
On four numerical schemes for a unipolar degenerate drift-diffusion model
Auteur(s) :
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Chainais-Hillairet, Claire [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Fuhrmann, Jürgen [Auteur]
Numerical Mathematics and Scientific Computing [WIAS]
Gaudeul, Benoît [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Chainais-Hillairet, Claire [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Fuhrmann, Jürgen [Auteur]
Numerical Mathematics and Scientific Computing [WIAS]
Gaudeul, Benoît [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Reliable numerical approximations of dissipative systems [RAPSODI]
Titre de la manifestation scientifique :
Finite Volumes for Complex Applications IX
Ville :
Bergen
Pays :
Norvège
Date de début de la manifestation scientifique :
2020-06-15
Date de publication :
2020
Mot(s)-clé(s) en anglais :
Finite Volume Methods
Drift-Diffusion Problems
Energy Methods
Drift-Diffusion Problems
Energy Methods
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We consider a unipolar degenerate drift-diffusion system where the relation between the concentration of the charged species c and the chemical potential h is $h(c) = log(c/(1−c))$. For four different finite volume schemes ...
Lire la suite >We consider a unipolar degenerate drift-diffusion system where the relation between the concentration of the charged species c and the chemical potential h is $h(c) = log(c/(1−c))$. For four different finite volume schemes based on four different formulations of the fluxes of the problem, we discuss stability and existence results. For two of them, we report a convergence proof. Numerical experiments illustrate the behaviour of the different schemes.Lire moins >
Lire la suite >We consider a unipolar degenerate drift-diffusion system where the relation between the concentration of the charged species c and the chemical potential h is $h(c) = log(c/(1−c))$. For four different finite volume schemes based on four different formulations of the fluxes of the problem, we discuss stability and existence results. For two of them, we report a convergence proof. Numerical experiments illustrate the behaviour of the different schemes.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- CCFG.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- CCFG.pdf
- Accès libre
- Accéder au document