Comparison of singular numbers of composition ...
Type de document :
Pré-publication ou Document de travail
Titre :
Comparison of singular numbers of composition operators on different Hilbert spaces of analytic functions
Auteur(s) :
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Lefèvre, Pascal [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Li, Daniel [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Rodriguez-Piazza, Luis [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Lefèvre, Pascal [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Li, Daniel [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Rodriguez-Piazza, Luis [Auteur]
Mot(s)-clé(s) en anglais :
approximation numbers
weighted Dirichlet space
composition operator
Hardy space
Hilbert spaces of analytic functions
Schatten classes
singular numbers
weighted Bergman space
weighted Dirichlet space
composition operator
Hardy space
Hilbert spaces of analytic functions
Schatten classes
singular numbers
weighted Bergman space
Discipline(s) HAL :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Résumé en anglais : [en]
We compare the rate of decay of singular numbers of a given composition operator acting on various Hilbert spaces of analytic functions on the unit disk $\D$. We show that for the Hardy and Bergman spaces, our results are ...
Lire la suite >We compare the rate of decay of singular numbers of a given composition operator acting on various Hilbert spaces of analytic functions on the unit disk $\D$. We show that for the Hardy and Bergman spaces, our results are sharp. We also give lower and upper estimates of the singular numbers of the composition operator with symbol the ``cusp map'' and the lens maps, acting on weighted Dirichlet spaces.Lire moins >
Lire la suite >We compare the rate of decay of singular numbers of a given composition operator acting on various Hilbert spaces of analytic functions on the unit disk $\D$. We show that for the Hardy and Bergman spaces, our results are sharp. We also give lower and upper estimates of the singular numbers of the composition operator with symbol the ``cusp map'' and the lens maps, acting on weighted Dirichlet spaces.Lire moins >
Langue :
Anglais
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- comparaison_ne-varietur.pdf
- Accès libre
- Accéder au document
- 2001.07482
- Accès libre
- Accéder au document