CLT for Circular beta-Ensembles at High ...
Type de document :
Pré-publication ou Document de travail
Titre :
CLT for Circular beta-Ensembles at High Temperature
Auteur(s) :
Hardy, Adrien [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Lambert, Gaultier [Auteur]
Institute of Mathematics University of Zurich
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Lambert, Gaultier [Auteur]
Institute of Mathematics University of Zurich
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Physique mathématique [math-ph]
Résumé en anglais : [en]
We consider the macroscopic large $N$ limit of the Circular beta-Ensemble at high temperature, and its weighted version as well, in the regime where the inverse temperature scales as $\beta/N$ for some parameter $\beta>0$. ...
Lire la suite >We consider the macroscopic large $N$ limit of the Circular beta-Ensemble at high temperature, and its weighted version as well, in the regime where the inverse temperature scales as $\beta/N$ for some parameter $\beta>0$. More precisely, in the limit $N\to\infty$, the equilibrium measure of this particle system is described as the unique minimizer of a functional which interpolates between the relative entropy ($\beta=0$) and the weighted logarithmic energy $(\beta=\infty$). The purpose of this work is to show that the fluctuation of the empirical measure around the equilibrium measure converges towards a Gaussian field whose covariance structure interpolates between the Lebesgue $L^2$ ($\beta=0$) and the Sobolev $H^{1/2}$ ($β=\infty$) norms. We furthermore obtain a rate of convergence for the fluctuations in the $W_2$ metric. Our proof uses the normal approximation result of Lambert, Ledoux, and Webb [2017], the Coulomb transport inequality of Chafaï, Hardy, and Maïda [2018], and a spectral analysis for the operator associated with the limiting covariance structure.Lire moins >
Lire la suite >We consider the macroscopic large $N$ limit of the Circular beta-Ensemble at high temperature, and its weighted version as well, in the regime where the inverse temperature scales as $\beta/N$ for some parameter $\beta>0$. More precisely, in the limit $N\to\infty$, the equilibrium measure of this particle system is described as the unique minimizer of a functional which interpolates between the relative entropy ($\beta=0$) and the weighted logarithmic energy $(\beta=\infty$). The purpose of this work is to show that the fluctuation of the empirical measure around the equilibrium measure converges towards a Gaussian field whose covariance structure interpolates between the Lebesgue $L^2$ ($\beta=0$) and the Sobolev $H^{1/2}$ ($β=\infty$) norms. We furthermore obtain a rate of convergence for the fluctuations in the $W_2$ metric. Our proof uses the normal approximation result of Lambert, Ledoux, and Webb [2017], the Coulomb transport inequality of Chafaï, Hardy, and Maïda [2018], and a spectral analysis for the operator associated with the limiting covariance structure.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- CbE10.pdf
- Accès libre
- Accéder au document