Traveling waves for some nonlocal 1D ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity
Auteur(s) :
De Laire, André [Auteur]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Mennuni, Pierre [Auteur]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Systèmes de particules et systèmes dynamiques [Paradyse]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Mennuni, Pierre [Auteur]
Méthodes quantitatives pour les modèles aléatoires de la physique [MEPHYSTO-POST]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Systèmes de particules et systèmes dynamiques [Paradyse]
Titre de la revue :
Discrete and Continuous Dynamical Systems - Series A
Pagination :
635-682
Éditeur :
American Institute of Mathematical Sciences
Date de publication :
2020-01
ISSN :
1078-0947
Mot(s)-clé(s) en anglais :
orbital stability
dark soli- tons
nonzero conditions at infinity
dark solitons
Nonlocal Schrödinger equation
Gross-Pitaevskii equation
traveling waves
dark soli- tons
nonzero conditions at infinity
dark solitons
Nonlocal Schrödinger equation
Gross-Pitaevskii equation
traveling waves
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We consider a nonlocal family of Gross-Pitaevskii equations with nonzero conditions at infinity in dimension one. We provide conditions on the nonlocal interaction such that there is a branch of traveling waves solutions ...
Lire la suite >We consider a nonlocal family of Gross-Pitaevskii equations with nonzero conditions at infinity in dimension one. We provide conditions on the nonlocal interaction such that there is a branch of traveling waves solutions with nonvanishing conditions at infinity. Moreover, we show that the branch is orbitally stable. In this manner, this result generalizes known properties for the contact interaction given by a Dirac delta function. Our proof relies on the minimization of the energy at fixed momentum. As a by-product of our analysis, we provide a simple condition to ensure that the solution to the Cauchy problem is global in time.Lire moins >
Lire la suite >We consider a nonlocal family of Gross-Pitaevskii equations with nonzero conditions at infinity in dimension one. We provide conditions on the nonlocal interaction such that there is a branch of traveling waves solutions with nonvanishing conditions at infinity. Moreover, we show that the branch is orbitally stable. In this manner, this result generalizes known properties for the contact interaction given by a Dirac delta function. Our proof relies on the minimization of the energy at fixed momentum. As a by-product of our analysis, we provide a simple condition to ensure that the solution to the Cauchy problem is global in time.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- GPN-final.pdf
- Accès libre
- Accéder au document
- 1812.08713
- Accès libre
- Accéder au document