On Bernstein's inequality for polynomials
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
On Bernstein's inequality for polynomials
Auteur(s) :
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Zarouf, Rachid [Auteur]
Apprentissage, Didactique, Evaluation, Formation [ADEF]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Zarouf, Rachid [Auteur]
Apprentissage, Didactique, Evaluation, Formation [ADEF]
Titre de la revue :
Analysis and Mathematical Physics
Éditeur :
Birkhäuser
Date de publication :
2019-03-20
ISSN :
1664-2368
Discipline(s) HAL :
Mathématiques [math]/Analyse classique [math.CA]
Résumé en anglais : [en]
Bernstein's classical inequality asserts that given a trigonometric polynomial $T$ of degree $n\geq1$, the sup-norm of the derivative of $T$ does not exceed $n$ times the sup-norm of $T$. We present various approaches to ...
Lire la suite >Bernstein's classical inequality asserts that given a trigonometric polynomial $T$ of degree $n\geq1$, the sup-norm of the derivative of $T$ does not exceed $n$ times the sup-norm of $T$. We present various approaches to prove this inequality and some of its natural extensions/variants, especially when it comes to replacing the sup-norm with the $L^p-norm$.Lire moins >
Lire la suite >Bernstein's classical inequality asserts that given a trigonometric polynomial $T$ of degree $n\geq1$, the sup-norm of the derivative of $T$ does not exceed $n$ times the sup-norm of $T$. We present various approaches to prove this inequality and some of its natural extensions/variants, especially when it comes to replacing the sup-norm with the $L^p-norm$.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Bernstein_Queffelec_Zarouf_23_03_2019.pdf
- Accès libre
- Accéder au document
- 1903.10801
- Accès libre
- Accéder au document