DLR equations and rigidity for the Sine-beta ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
DLR equations and rigidity for the Sine-beta process
Auteur(s) :
Dereudre, David [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Hardy, Adrien [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Systèmes de particules et systèmes dynamiques [Paradyse]
Leblé, Thomas [Auteur]
Courant Institute of Mathematical Sciences [New York] [CIMS]
Mathématiques Appliquées Paris 5 [MAP5 - UMR 8145]
Maïda, Mylène [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Hardy, Adrien [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Systèmes de particules et systèmes dynamiques [Paradyse]
Leblé, Thomas [Auteur]
Courant Institute of Mathematical Sciences [New York] [CIMS]
Mathématiques Appliquées Paris 5 [MAP5 - UMR 8145]
Maïda, Mylène [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Communications on Pure and Applied Mathematics
Éditeur :
Wiley
Date de publication :
2020-11-18
ISSN :
0010-3640
Discipline(s) HAL :
Mathématiques [math]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
We investigate Sine β , the universal point process arising as the thermodynamic limit of the microscopic scale behavior in the bulk of one-dimensional log-gases, or β-ensembles, at inverse temperature β > 0. We adopt a ...
Lire la suite >We investigate Sine β , the universal point process arising as the thermodynamic limit of the microscopic scale behavior in the bulk of one-dimensional log-gases, or β-ensembles, at inverse temperature β > 0. We adopt a statistical physics perspective, and give a description of Sine β using the Dobrushin-Landford-Ruelle (DLR) formalism by proving that it satisfies the DLR equations: the restriction of Sine β to a compact set, conditionally to the exterior configuration, reads as a Gibbs measure given by a finite log-gas in a potential generated by the exterior configuration. In short, Sine β is a natural infinite Gibbs measure at inverse temperature β > 0 associated with the logarithmic pair potential interaction. Moreover, we show that Sine β is number-rigid and tolerant in the sense of Ghosh-Peres, i.e. the number, but not the position, of particles lying inside a compact set is a deterministic function of the exterior configuration. Our proof of the rigidity differs from the usual strategy and is robust enough to include more general long range interactions in arbitrary dimension.Lire moins >
Lire la suite >We investigate Sine β , the universal point process arising as the thermodynamic limit of the microscopic scale behavior in the bulk of one-dimensional log-gases, or β-ensembles, at inverse temperature β > 0. We adopt a statistical physics perspective, and give a description of Sine β using the Dobrushin-Landford-Ruelle (DLR) formalism by proving that it satisfies the DLR equations: the restriction of Sine β to a compact set, conditionally to the exterior configuration, reads as a Gibbs measure given by a finite log-gas in a potential generated by the exterior configuration. In short, Sine β is a natural infinite Gibbs measure at inverse temperature β > 0 associated with the logarithmic pair potential interaction. Moreover, we show that Sine β is number-rigid and tolerant in the sense of Ghosh-Peres, i.e. the number, but not the position, of particles lying inside a compact set is a deterministic function of the exterior configuration. Our proof of the rigidity differs from the usual strategy and is robust enough to include more general long range interactions in arbitrary dimension.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- DLR_and_Rigidity_final.pdf
- Accès libre
- Accéder au document
- 1809.03989
- Accès libre
- Accéder au document