Intersection Homology. General perversities ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Intersection Homology. General perversities and topological invariance
Auteur(s) :
Chataur, David [Auteur]
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
Saralegi-Aranguren, Martintxo [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Tanré, Daniel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée - UMR CNRS 7352 UPJV [LAMFA]
Saralegi-Aranguren, Martintxo [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Tanré, Daniel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Illinois Journal of Mathematics
Date de publication :
2019
Discipline(s) HAL :
Mathématiques [math]/Topologie algébrique [math.AT]
Résumé en anglais : [en]
Topological invariance of the intersection homology of a pseudomanifold without codimension one strata, proven by Goresky and MacPherson, is one of the main features of this homology. This property is true for strata ...
Lire la suite >Topological invariance of the intersection homology of a pseudomanifold without codimension one strata, proven by Goresky and MacPherson, is one of the main features of this homology. This property is true for strata codimension depending perversities with some growth conditions, verifying $\overline p(1)=\overline p(2)=0$. King reproves this invariance by associating an intrinsic pseudomanifold $X^*$ to any pseudomanifold $X$. His proof consists of an isomorphism between the associated intersection homologies $H^{\overline{p}}_{*}(X) \cong H^{\overline{p}}_{*}(X^*)$ for any perversity $\overline{p}$ with the same growth conditions verifying $\overline p(1)\geq 0$. In this work, we prove a certain topological invariance within the framework of strata depending perversities, $\overline{p}$, which corresponds to the classical topological invariance if $\overline{p}$ is a GM-perversity. We also extend it to the tame intersection homology, a variation of the intersection homology, particularly suited for "large" perversities, if there is no singular strata on $X$ becoming regular in $X^*$. In particular, under the above conditions, the intersection homology and the tame intersection homology are invariant under a refinement of the stratification.Lire moins >
Lire la suite >Topological invariance of the intersection homology of a pseudomanifold without codimension one strata, proven by Goresky and MacPherson, is one of the main features of this homology. This property is true for strata codimension depending perversities with some growth conditions, verifying $\overline p(1)=\overline p(2)=0$. King reproves this invariance by associating an intrinsic pseudomanifold $X^*$ to any pseudomanifold $X$. His proof consists of an isomorphism between the associated intersection homologies $H^{\overline{p}}_{*}(X) \cong H^{\overline{p}}_{*}(X^*)$ for any perversity $\overline{p}$ with the same growth conditions verifying $\overline p(1)\geq 0$. In this work, we prove a certain topological invariance within the framework of strata depending perversities, $\overline{p}$, which corresponds to the classical topological invariance if $\overline{p}$ is a GM-perversity. We also extend it to the tame intersection homology, a variation of the intersection homology, particularly suited for "large" perversities, if there is no singular strata on $X$ becoming regular in $X^*$. In particular, under the above conditions, the intersection homology and the tame intersection homology are invariant under a refinement of the stratification.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- 1602.03009
- Accès libre
- Accéder au document