Spectral analysis of Morse-Smale gradient flows
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Spectral analysis of Morse-Smale gradient flows
Auteur(s) :
Dang, Nguyen Viet [Auteur]
Probabilités, statistique, physique mathématique [PSPM]
Institut Camille Jordan [ICJ]
Riviere, Gabriel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Probabilités, statistique, physique mathématique [PSPM]
Institut Camille Jordan [ICJ]
Riviere, Gabriel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Annales Scientifiques de l'École Normale Supérieure
Éditeur :
Société mathématique de France
Date de publication :
2019
ISSN :
0012-9593
Mot(s)-clé(s) en anglais :
Morse theory
gradient flow
resonances
transfer operator
differential topology
gradient flow
resonances
transfer operator
differential topology
Discipline(s) HAL :
Mathématiques [math]/Systèmes dynamiques [math.DS]
Mathématiques [math]/Topologie géométrique [math.GT]
Mathématiques [math]/Théorie spectrale [math.SP]
Mathématiques [math]/Topologie géométrique [math.GT]
Mathématiques [math]/Théorie spectrale [math.SP]
Résumé en anglais : [en]
On a smooth, compact and oriented manifold without boundary, we give a complete description of the correlation function of a Morse-Smale gradient flow satisfying a certain nonresonance assumption. This is done by analyzing ...
Lire la suite >On a smooth, compact and oriented manifold without boundary, we give a complete description of the correlation function of a Morse-Smale gradient flow satisfying a certain nonresonance assumption. This is done by analyzing precisely the spectrum of the generator of such a flow acting on certain anisotropic spaces of currents. In particular, we prove that this dynamical spectrum is given by linear combinations with integer coefficients of the Lyapunov exponents at the critical points of the Morse function. Via this spectral analysis and in analogy with Hodge-de Rham theory, we give an interpretation of the Morse complex as the image of the de Rham complex under the spectral projector on the kernel of the generator of the flow. This allows us to recover classical results from differential topology such as the Morse inequalities and Poincaré duality.Lire moins >
Lire la suite >On a smooth, compact and oriented manifold without boundary, we give a complete description of the correlation function of a Morse-Smale gradient flow satisfying a certain nonresonance assumption. This is done by analyzing precisely the spectrum of the generator of such a flow acting on certain anisotropic spaces of currents. In particular, we prove that this dynamical spectrum is given by linear combinations with integer coefficients of the Lyapunov exponents at the critical points of the Morse function. Via this spectral analysis and in analogy with Hodge-de Rham theory, we give an interpretation of the Morse complex as the image of the de Rham complex under the spectral projector on the kernel of the generator of the flow. This allows us to recover classical results from differential topology such as the Morse inequalities and Poincaré duality.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
Shortened version (56 p.), to appear in Annales Sci. ENS
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Dang-Riviere-gradient-flow-2018.pdf
- Accès libre
- Accéder au document
- 1605.05516
- Accès libre
- Accéder au document