KAM POUR L' ÉQUATION DES ONDES NON LINÉAIRE ...
Type de document :
Pré-publication ou Document de travail
Titre :
KAM POUR L' ÉQUATION DES ONDES NON LINÉAIRE SUR LE CERCLE: SOLUTION DE FAIBLE AMPLITIUDE
Auteur(s) :
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
In this paper we consider the nonlinear wave equation on the circle:\begin{equation} \nonumberu_{tt} - u_{xx} + m u = g(x,u), \quad t \in \mathbb{R},\: x \in \mathbb{S}^1,\end{equation}where $m \in [1,2]$ is a mass and ...
Lire la suite >In this paper we consider the nonlinear wave equation on the circle:\begin{equation} \nonumberu_{tt} - u_{xx} + m u = g(x,u), \quad t \in \mathbb{R},\: x \in \mathbb{S}^1,\end{equation}where $m \in [1,2]$ is a mass and $g(x,u)=4u^3+ O(u^4)$. This equation will be treated as a perturbation of the integrable Hamiltonian:\begin{equation} \tag{$\ast$} \label{first equation}u_t= v, \quad v_t = - u_{xx} + m u.\end{equation}Near the origin and for generic $m$, we prove the existence of small amplitude quasi-periodic solutions close to the solution of the linear equation\eqref{first equation}. For the proof we use an abstract KAM theorem in infinite dimension and a Birkhoff normal form result.Lire moins >
Lire la suite >In this paper we consider the nonlinear wave equation on the circle:\begin{equation} \nonumberu_{tt} - u_{xx} + m u = g(x,u), \quad t \in \mathbb{R},\: x \in \mathbb{S}^1,\end{equation}where $m \in [1,2]$ is a mass and $g(x,u)=4u^3+ O(u^4)$. This equation will be treated as a perturbation of the integrable Hamiltonian:\begin{equation} \tag{$\ast$} \label{first equation}u_t= v, \quad v_t = - u_{xx} + m u.\end{equation}Near the origin and for generic $m$, we prove the existence of small amplitude quasi-periodic solutions close to the solution of the linear equation\eqref{first equation}. For the proof we use an abstract KAM theorem in infinite dimension and a Birkhoff normal form result.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- KAM%20for%20NLW.pdf
- Accès libre
- Accéder au document
- 1712.01597
- Accès libre
- Accéder au document