Generalized Kähler-Einstein metric along ...
Type de document :
Pré-publication ou Document de travail
Titre :
Generalized Kähler-Einstein metric along Q-Fano fibration
Auteur(s) :
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
In this paper, we show that along $\mathbb Q$-Fano fibration, when general fibres, base and central fiber (with at worst Kawamata log terminal singularities)are K-poly stable then there exists a relative K\"ahler-Einstein ...
Lire la suite >In this paper, we show that along $\mathbb Q$-Fano fibration, when general fibres, base and central fiber (with at worst Kawamata log terminal singularities)are K-poly stable then there exists a relative K\"ahler-Einstein metric. We introduce the fiberwise K\"ahler-Einstein foliation and we mention that the main difficulty to obtain higher estimates is to solve relative CMA equation along such foliation. We propose a program such that for finding a pair of canonical metric $(\omega_X,\omega_B)$, which satisfies in $Ric(\omega_X)=\pi^*\omega_B+\pi^*(\omega_{WP})+[\mathcal N]$on K-poly stable degeneration $\pi:X\to B$, where $Ric(\omega_B)=\omega_B$, we need to have Canonical bundle formula.Lire moins >
Lire la suite >In this paper, we show that along $\mathbb Q$-Fano fibration, when general fibres, base and central fiber (with at worst Kawamata log terminal singularities)are K-poly stable then there exists a relative K\"ahler-Einstein metric. We introduce the fiberwise K\"ahler-Einstein foliation and we mention that the main difficulty to obtain higher estimates is to solve relative CMA equation along such foliation. We propose a program such that for finding a pair of canonical metric $(\omega_X,\omega_B)$, which satisfies in $Ric(\omega_X)=\pi^*\omega_B+\pi^*(\omega_{WP})+[\mathcal N]$on K-poly stable degeneration $\pi:X\to B$, where $Ric(\omega_B)=\omega_B$, we need to have Canonical bundle formula.Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- KE-jolany-Hassan.pdf
- Accès libre
- Accéder au document