Spectral analysis of a model for quantum friction
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Spectral analysis of a model for quantum friction
Auteur(s) :
De Bievre, Stephan [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Inria Lille - Nord Europe
Faupin, Jérémy [Auteur]
Institut Élie Cartan de Lorraine [IECL]
Schubnel, Baptiste [Auteur]
Institut Élie Cartan de Lorraine [IECL]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Inria Lille - Nord Europe
Faupin, Jérémy [Auteur]
Institut Élie Cartan de Lorraine [IECL]
Schubnel, Baptiste [Auteur]
Institut Élie Cartan de Lorraine [IECL]
Titre de la revue :
Rev.Math.Phys.
Pagination :
1750019
Date de publication :
2017
Mot(s)-clé(s) en anglais :
Quantum friction
spectral theory
quantum field theory
ground state
spectral renormalization group
Fermi Golden Rule
spectral
field theory
renormalization group
infrared
particle: classical
Hamiltonian
drag force
spectral theory
quantum field theory
ground state
spectral renormalization group
Fermi Golden Rule
spectral
field theory
renormalization group
infrared
particle: classical
Hamiltonian
drag force
Discipline(s) HAL :
Physique [physics]/Physique mathématique [math-ph]
Résumé en anglais : [en]
An otherwise free classical particle moving through an extended spatially homogeneous medium with which it may exchange energy and momentum will undergo a frictional drag force in the direction opposite to its velocity ...
Lire la suite >An otherwise free classical particle moving through an extended spatially homogeneous medium with which it may exchange energy and momentum will undergo a frictional drag force in the direction opposite to its velocity with a magnitude which is typically proportional to a power of its speed. We study here the quantum equivalent of a classical Hamiltonian model for this friction phenomenon that was proposed in [11]. More precisely, we study the spectral properties of the quantum Hamiltonian and compare the quantum and classical situations. Under suitable conditions on the infrared behavior of the model, we prove that the Hamiltonian at fixed total momentum has no ground state except when the total momentum vanishes, and that its spectrum is otherwise absolutely continuous.Lire moins >
Lire la suite >An otherwise free classical particle moving through an extended spatially homogeneous medium with which it may exchange energy and momentum will undergo a frictional drag force in the direction opposite to its velocity with a magnitude which is typically proportional to a power of its speed. We study here the quantum equivalent of a classical Hamiltonian model for this friction phenomenon that was proposed in [11]. More precisely, we study the spectral properties of the quantum Hamiltonian and compare the quantum and classical situations. Under suitable conditions on the infrared behavior of the model, we prove that the Hamiltonian at fixed total momentum has no ground state except when the total momentum vanishes, and that its spectrum is otherwise absolutely continuous.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- 1512.05704
- Accès libre
- Accéder au document