Incompressible immiscible multiphase flows ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Incompressible immiscible multiphase flows in porous media: a variational approach
Auteur(s) :
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Gallouët, Thomas [Auteur]
Département de Mathématiques [Liège]
Monsaingeon, Leonard [Auteur]
Institut Élie Cartan de Lorraine [IECL]
Reliable numerical approximations of dissipative systems [RAPSODI]
Gallouët, Thomas [Auteur]
Département de Mathématiques [Liège]
Monsaingeon, Leonard [Auteur]
Institut Élie Cartan de Lorraine [IECL]
Titre de la revue :
Analysis & PDE
Pagination :
1845–1876
Éditeur :
Mathematical Sciences Publishers
Date de publication :
2017
ISSN :
2157-5045
Mot(s)-clé(s) en anglais :
Wasserstein gradient flows
Multiphase porous media flows
constrained par-abolic system
minimizing movement scheme
Multiphase porous media flows
constrained par-abolic system
minimizing movement scheme
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Optimisation et contrôle [math.OC]
Planète et Univers [physics]/Sciences de la Terre/Hydrologie
Mathématiques [math]/Optimisation et contrôle [math.OC]
Planète et Univers [physics]/Sciences de la Terre/Hydrologie
Résumé en anglais : [en]
We describe the competitive motion of (N + 1) incompressible immiscible phases within a porous medium as the gradient flow of a singular energy in the space of non-negative measures with prescribed mass endowed with some ...
Lire la suite >We describe the competitive motion of (N + 1) incompressible immiscible phases within a porous medium as the gradient flow of a singular energy in the space of non-negative measures with prescribed mass endowed with some tensorial Wasserstein distance. We show the convergence of the approximation obtained by a minimization schemè a la [R. Jordan, D. Kinder-lehrer & F. Otto, SIAM J. Math. Anal, 29(1):1–17, 1998]. This allow to obtain a new existence result for a physically well-established system of PDEs consisting in the Darcy-Muskat law for each phase, N capillary pressure relations, and a constraint on the volume occupied by the fluid. Our study does not require the introduction of any global or complementary pressure.Lire moins >
Lire la suite >We describe the competitive motion of (N + 1) incompressible immiscible phases within a porous medium as the gradient flow of a singular energy in the space of non-negative measures with prescribed mass endowed with some tensorial Wasserstein distance. We show the convergence of the approximation obtained by a minimization schemè a la [R. Jordan, D. Kinder-lehrer & F. Otto, SIAM J. Math. Anal, 29(1):1–17, 1998]. This allow to obtain a new existence result for a physically well-established system of PDEs consisting in the Darcy-Muskat law for each phase, N capillary pressure relations, and a constraint on the volume occupied by the fluid. Our study does not require the introduction of any global or complementary pressure.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Nphases_JKO.pdf
- Accès libre
- Accéder au document
- 1607.04009
- Accès libre
- Accéder au document