Incompressible immiscible multiphase flows ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Incompressible immiscible multiphase flows in porous media: a variational approach
Author(s) :
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Gallouët, Thomas [Auteur]
Département de Mathématiques [Liège]
Monsaingeon, Leonard [Auteur]
Institut Élie Cartan de Lorraine [IECL]
Reliable numerical approximations of dissipative systems [RAPSODI]
Gallouët, Thomas [Auteur]
Département de Mathématiques [Liège]
Monsaingeon, Leonard [Auteur]
Institut Élie Cartan de Lorraine [IECL]
Journal title :
Analysis & PDE
Pages :
1845–1876
Publisher :
Mathematical Sciences Publishers
Publication date :
2017
ISSN :
2157-5045
English keyword(s) :
Wasserstein gradient flows
Multiphase porous media flows
constrained par-abolic system
minimizing movement scheme
Multiphase porous media flows
constrained par-abolic system
minimizing movement scheme
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Optimisation et contrôle [math.OC]
Planète et Univers [physics]/Sciences de la Terre/Hydrologie
Mathématiques [math]/Optimisation et contrôle [math.OC]
Planète et Univers [physics]/Sciences de la Terre/Hydrologie
English abstract : [en]
We describe the competitive motion of (N + 1) incompressible immiscible phases within a porous medium as the gradient flow of a singular energy in the space of non-negative measures with prescribed mass endowed with some ...
Show more >We describe the competitive motion of (N + 1) incompressible immiscible phases within a porous medium as the gradient flow of a singular energy in the space of non-negative measures with prescribed mass endowed with some tensorial Wasserstein distance. We show the convergence of the approximation obtained by a minimization schemè a la [R. Jordan, D. Kinder-lehrer & F. Otto, SIAM J. Math. Anal, 29(1):1–17, 1998]. This allow to obtain a new existence result for a physically well-established system of PDEs consisting in the Darcy-Muskat law for each phase, N capillary pressure relations, and a constraint on the volume occupied by the fluid. Our study does not require the introduction of any global or complementary pressure.Show less >
Show more >We describe the competitive motion of (N + 1) incompressible immiscible phases within a porous medium as the gradient flow of a singular energy in the space of non-negative measures with prescribed mass endowed with some tensorial Wasserstein distance. We show the convergence of the approximation obtained by a minimization schemè a la [R. Jordan, D. Kinder-lehrer & F. Otto, SIAM J. Math. Anal, 29(1):1–17, 1998]. This allow to obtain a new existence result for a physically well-established system of PDEs consisting in the Darcy-Muskat law for each phase, N capillary pressure relations, and a constraint on the volume occupied by the fluid. Our study does not require the introduction of any global or complementary pressure.Show less >
Language :
Anglais
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- document
- Open access
- Access the document
- Nphases_JKO.pdf
- Open access
- Access the document
- 1607.04009
- Open access
- Access the document