Improving Newton's method performance by ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Improving Newton's method performance by parametrization: the case of Richards equation
Auteur(s) :
Brenner, Konstantin [Auteur]
COmplex Flows For Energy and Environment [COFFEE]
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
COmplex Flows For Energy and Environment [COFFEE]
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Titre de la revue :
SIAM Journal on Numerical Analysis
Pagination :
1760--1785
Éditeur :
Society for Industrial and Applied Mathematics
Date de publication :
2017
ISSN :
0036-1429
Mot(s)-clé(s) en anglais :
Finite Volumes
parametrization
Newton's method
Richards equation
parametrization
Newton's method
Richards equation
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse numérique [math.NA]
Planète et Univers [physics]/Sciences de la Terre/Hydrologie
Mathématiques [math]/Analyse numérique [math.NA]
Planète et Univers [physics]/Sciences de la Terre/Hydrologie
Résumé en anglais : [en]
The nonlinear systems obtained by discretizing degenerate parabolic equations may be hard to solve, especially with Newton's method. In this paper, we apply to Richards equation a strategy that consists in defining a new ...
Lire la suite >The nonlinear systems obtained by discretizing degenerate parabolic equations may be hard to solve, especially with Newton's method. In this paper, we apply to Richards equation a strategy that consists in defining a new primary unknown for the continuous equation in order to stabilize Newton's method by parametrizing the graph linking the pressure and the saturation. The resulting form of Richards equation is then discretized thanks to a monotone Finite Volume scheme. We prove the well-posedness of the numerical scheme. Then we show under appropriate non-degeneracy conditions on the parametrization that Newton’s method converges locally and quadratically. Finally, we provide numerical evidences of the efficiency of our approach.Lire moins >
Lire la suite >The nonlinear systems obtained by discretizing degenerate parabolic equations may be hard to solve, especially with Newton's method. In this paper, we apply to Richards equation a strategy that consists in defining a new primary unknown for the continuous equation in order to stabilize Newton's method by parametrizing the graph linking the pressure and the saturation. The resulting form of Richards equation is then discretized thanks to a monotone Finite Volume scheme. We prove the well-posedness of the numerical scheme. Then we show under appropriate non-degeneracy conditions on the parametrization that Newton’s method converges locally and quadratically. Finally, we provide numerical evidences of the efficiency of our approach.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- BC16-Richards.pdf
- Accès libre
- Accéder au document
- 1607.01508
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- BC16-Richards.pdf
- Accès libre
- Accéder au document