A Survey on the Eigenvalues Local Behavior ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
A Survey on the Eigenvalues Local Behavior of Large Complex Correlated Wishart Matrices
Auteur(s) :
Hachem, Walid [Auteur]
Laboratoire Traitement et Communication de l'Information [LTCI]
Hardy, Adrien [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Najim, Jamal [Auteur]
Laboratoire d'Informatique Gaspard-Monge [LIGM]
Laboratoire Traitement et Communication de l'Information [LTCI]
Hardy, Adrien [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Najim, Jamal [Auteur]
Laboratoire d'Informatique Gaspard-Monge [LIGM]
Titre de la revue :
ESAIM: Proceedings and Surveys
Pagination :
150-174
Éditeur :
EDP Sciences
Date de publication :
2015-10
ISSN :
2267-3059
Mot(s)-clé(s) en anglais :
Large random matrices
Wishart matrices
local fluctuations
Airy kernel
Bessel kernel
Pearcey kernel
Wishart matrices
local fluctuations
Airy kernel
Bessel kernel
Pearcey kernel
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Statistiques [math.ST]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Statistiques [math.ST]
Résumé en anglais : [en]
The aim of this note is to provide a pedagogical survey of the recent works by the authors ( arXiv:1409.7548 and arXiv:1507.06013) concerning the local behavior of the eigenvalues of large complex correlated Wishart ...
Lire la suite >The aim of this note is to provide a pedagogical survey of the recent works by the authors ( arXiv:1409.7548 and arXiv:1507.06013) concerning the local behavior of the eigenvalues of large complex correlated Wishart matrices at the edges and cusp points of the spectrum: Under quite general conditions, the eigenvalues fluctuations at a soft edge of the limiting spectrum, at the hard edge when it is present, or at a cusp point, are respectively described by mean of the Airy kernel, the Bessel kernel, or the Pearcey kernel. Moreover, the eigenvalues fluctuations at several soft edges are asymptotically independent. In particular, the asymptotic fluctuations of the matrix condition number can be described. Finally, the next order term of the hard edge asymptotics is provided.Lire moins >
Lire la suite >The aim of this note is to provide a pedagogical survey of the recent works by the authors ( arXiv:1409.7548 and arXiv:1507.06013) concerning the local behavior of the eigenvalues of large complex correlated Wishart matrices at the edges and cusp points of the spectrum: Under quite general conditions, the eigenvalues fluctuations at a soft edge of the limiting spectrum, at the hard edge when it is present, or at a cusp point, are respectively described by mean of the Airy kernel, the Bessel kernel, or the Pearcey kernel. Moreover, the eigenvalues fluctuations at several soft edges are asymptotically independent. In particular, the asymptotic fluctuations of the matrix condition number can be described. Finally, the next order term of the hard edge asymptotics is provided.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- revised_esaim.pdf
- Accès libre
- Accéder au document
- 1509.04910
- Accès libre
- Accéder au document