Constructive approximation in de Branges-Rovnyak ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Constructive approximation in de Branges-Rovnyak spaces
Auteur(s) :
El-Fallah, O [Auteur]
Fricain, E [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Kellay, Karim [Auteur]
Institut de Mathématiques de Bordeaux [IMB]
Mashreghi, J [Auteur]
Ransford, T. [Auteur]
Fricain, E [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Kellay, Karim [Auteur]
Institut de Mathématiques de Bordeaux [IMB]
Mashreghi, J [Auteur]
Ransford, T. [Auteur]
Titre de la revue :
Constructive Approximation
Pagination :
269-281
Éditeur :
Springer Verlag
Date de publication :
2016-09-21
ISSN :
0176-4276
Discipline(s) HAL :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Mathématiques [math]/Variables complexes [math.CV]
Mathématiques [math]/Analyse classique [math.CA]
Mathématiques [math]/Variables complexes [math.CV]
Mathématiques [math]/Analyse classique [math.CA]
Résumé en anglais : [en]
In most classical holomorphic function spaces on the unit disk, a function $f$ can be approximated in the norm of the space by its dilates $f_r(z):=f(rz)~(r < 1)$.We show that this is \emph{not} the case for the de ...
Lire la suite >In most classical holomorphic function spaces on the unit disk, a function $f$ can be approximated in the norm of the space by its dilates $f_r(z):=f(rz)~(r < 1)$.We show that this is \emph{not} the case for the de Branges--Rovnyak spaces $\cH(b)$. More precisely, we give an example of a non-extreme point $b$ of the unit ball of $H^\infty$ and a function $f\in\cH(b)$ such that $\lim_{r\to1^-}\|f_r\|_{\cH(b)}=\infty$.It is known that, if $b$ is a non-extreme point of the unit ball of $H^\infty$, then polynomials are dense in $\cH(b)$. We give the first constructive proof of this fact.Lire moins >
Lire la suite >In most classical holomorphic function spaces on the unit disk, a function $f$ can be approximated in the norm of the space by its dilates $f_r(z):=f(rz)~(r < 1)$.We show that this is \emph{not} the case for the de Branges--Rovnyak spaces $\cH(b)$. More precisely, we give an example of a non-extreme point $b$ of the unit ball of $H^\infty$ and a function $f\in\cH(b)$ such that $\lim_{r\to1^-}\|f_r\|_{\cH(b)}=\infty$.It is known that, if $b$ is a non-extreme point of the unit ball of $H^\infty$, then polynomials are dense in $\cH(b)$. We give the first constructive proof of this fact.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Arxiv-version2.pdf
- Accès libre
- Accéder au document