Isosystolic inequalities for optical hypersurfaces
Type de document :
Pré-publication ou Document de travail
Titre :
Isosystolic inequalities for optical hypersurfaces
Auteur(s) :
Álvarez Paiva, Juan-Carlos [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Balacheff, Florent [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Tzanev, Kroum [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Balacheff, Florent [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Tzanev, Kroum [Auteur]
Mot(s)-clé(s) en anglais :
Systolic inequalities
optical hypersurface
Finsler metric
geometry of numbers
convex geometry
Mahler conjecture
optical hypersurface
Finsler metric
geometry of numbers
convex geometry
Mahler conjecture
Discipline(s) HAL :
Mathématiques [math]/Géométrie différentielle [math.DG]
Mathématiques [math]/Géométrie métrique [math.MG]
Mathématiques [math]/Géométrie symplectique [math.SG]
Mathématiques [math]/Géométrie métrique [math.MG]
Mathématiques [math]/Géométrie symplectique [math.SG]
Résumé en anglais : [en]
We explore a natural generalization of systolic geometry to Finsler metrics and optical hypersurfaces with special emphasis on its relation to the Mahler conjecture and the geometry of numbers. In particular, we show that ...
Lire la suite >We explore a natural generalization of systolic geometry to Finsler metrics and optical hypersurfaces with special emphasis on its relation to the Mahler conjecture and the geometry of numbers. In particular, we show that if an optical hypersurface of contact type in the cotangent bundle of the 2-dimensional torus encloses a volume $V$, then it carries a periodic characteristic whose action is at most $\sqrt{V/3}$. This result is deduced from an interesting dual version of Minkowski's lattice-point theorem: if the origin is the unique integer point in the interior of a planar convex body, the area of its dual body is at least 3/2.Lire moins >
Lire la suite >We explore a natural generalization of systolic geometry to Finsler metrics and optical hypersurfaces with special emphasis on its relation to the Mahler conjecture and the geometry of numbers. In particular, we show that if an optical hypersurface of contact type in the cotangent bundle of the 2-dimensional torus encloses a volume $V$, then it carries a periodic characteristic whose action is at most $\sqrt{V/3}$. This result is deduced from an interesting dual version of Minkowski's lattice-point theorem: if the origin is the unique integer point in the interior of a planar convex body, the area of its dual body is at least 3/2.Lire moins >
Langue :
Anglais
Projet ANR :
Collections :
Source :
Fichiers
- 1308.5522
- Accès libre
- Accéder au document