Quantitative equidistribution properties ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Quantitative equidistribution properties of toral eigenfunctions
Auteur(s) :
Hezari, Hamid [Auteur]
Department of Mathematics [Irvine]
Riviere, Gabriel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Department of Mathematics [Irvine]
Riviere, Gabriel [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Journal of Spectral Theory
Éditeur :
European Mathematical Society
Date de publication :
2017-06-05
ISSN :
1664-039X
Mot(s)-clé(s) en anglais :
Quantum ergodicity
Eigenfunctions of the Laplacian
Eigenfunctions of the Laplacian
Discipline(s) HAL :
Mathématiques [math]/Théorie spectrale [math.SP]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Physique mathématique [math-ph]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Physique mathématique [math-ph]
Résumé en anglais : [en]
In this note, we prove quantitative equidistribution properties for orthonor-mal bases of eigenfunctions of the Laplacian on the rational d-torus. We show that the rate of equidistribution of such eigenfunctions is polynomial. ...
Lire la suite >In this note, we prove quantitative equidistribution properties for orthonor-mal bases of eigenfunctions of the Laplacian on the rational d-torus. We show that the rate of equidistribution of such eigenfunctions is polynomial. We also prove that equidistribution of eigenfunctions holds for symbols supported in balls with a radius shrinking at a polynomial rate.Lire moins >
Lire la suite >In this note, we prove quantitative equidistribution properties for orthonor-mal bases of eigenfunctions of the Laplacian on the rational d-torus. We show that the rate of equidistribution of such eigenfunctions is polynomial. We also prove that equidistribution of eigenfunctions holds for symbols supported in balls with a radius shrinking at a polynomial rate.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Commentaire :
This article is based on the appendix of our previous preprint: arXiv:1411.4078. We have included improvements and have simplified the proofs (no semiclassical/microlocal analysis background is required).
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- HezRiv2015-torus.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- HezRiv2015-torus.pdf
- Accès libre
- Accéder au document