PLS Approach for clusterwise linear ...
Type de document :
Partie d'ouvrage
Titre :
PLS Approach for clusterwise linear regression on functional data
Auteur(s) :
Preda, Cristian [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Saporta, Gilbert [Auteur]
CEDRIC. Méthodes statistiques de data-mining et apprentissage [CEDRIC - MSDMA]
MOdel for Data Analysis and Learning [MODAL]
Saporta, Gilbert [Auteur]
CEDRIC. Méthodes statistiques de data-mining et apprentissage [CEDRIC - MSDMA]
Éditeur(s) ou directeur(s) scientifique(s) :
D.Banks
Titre de l’ouvrage :
Classification, Clustering, and Data Mining Applications
Éditeur :
Springer
Springer Berlin Heidelberg
Springer Berlin Heidelberg
Lieu de publication :
Berlin, Heidelberg
Date de publication :
2004-01-01
Discipline(s) HAL :
Mathématiques [math]/Statistiques [math.ST]
Résumé en anglais : [en]
Partial Least Squares approach is used for the clusterwise linear regression algorithm when the set of predictor variables forms a L2 continuous stochastic process.The number of clusters is treated as unknown and the ...
Lire la suite >Partial Least Squares approach is used for the clusterwise linear regression algorithm when the set of predictor variables forms a L2 continuous stochastic process.The number of clusters is treated as unknown and the convergence of the clusterwise algorithm is discussed.The approach is compared with other methods via an application on stock-exchange data.Lire moins >
Lire la suite >Partial Least Squares approach is used for the clusterwise linear regression algorithm when the set of predictor variables forms a L2 continuous stochastic process.The number of clusters is treated as unknown and the convergence of the clusterwise algorithm is discussed.The approach is compared with other methods via an application on stock-exchange data.Lire moins >
Langue :
Anglais
Audience :
Non spécifiée
Vulgarisation :
Non
Commentaire :
IXth Conference of the International Federation of Classification Societies
Collections :
Source :
Fichiers
- Accès libre
- Accéder au document