Immeubles à angles droits et modules ...
Document type :
Thèse
Title :
Immeubles à angles droits et modules combinatoires au bord
Alternative title :
Immeubles à angles droits et modules combinatoires au bord
English title :
Right-angled buildings and combinatorial modulus on the boundary
Author(s) :
Thesis director(s) :
Marc Bourdon
Defence date :
2014-12-10
Jury president :
Pierre-Emmanuel Caprace (rapporteur)
Mario Bonk
Livio Flaminio
Hervé Pajot
Pierre Pansu
Mario Bonk
Livio Flaminio
Hervé Pajot
Pierre Pansu
Jury member(s) :
Pierre-Emmanuel Caprace (rapporteur)
Mario Bonk
Livio Flaminio
Hervé Pajot
Pierre Pansu
Mario Bonk
Livio Flaminio
Hervé Pajot
Pierre Pansu
Accredited body :
Université Lille 1
Doctoral school :
EDSPI Lille
Keyword(s) :
Espaces hyperboliques
Immeubles
Bord
Propriété de Loewner combinatoire
modules combinatoires
Immeubles
Bord
Propriété de Loewner combinatoire
modules combinatoires
English keyword(s) :
Hyperbolic spaces
Combinatorial Loewner property
Buildings
Boundaries
Combinatorial modulus
Combinatorial Loewner property
Buildings
Boundaries
Combinatorial modulus
HAL domain(s) :
Mathématiques [math]/Théorie des groupes [math.GR]
French abstract :
L'objet de cette thèse est d'étudier la géométrie des immeubles à angles droits. Ces espaces, définis par J. Tits sont des espaces singuliers qui peuvent être vus comme des généralisations des arbres en dimension supérieure. ...
Show more >L'objet de cette thèse est d'étudier la géométrie des immeubles à angles droits. Ces espaces, définis par J. Tits sont des espaces singuliers qui peuvent être vus comme des généralisations des arbres en dimension supérieure. La thèse est divisée en deux parties. Dans la première partie, nous décrivons comment la notion de résidus parallèles permet de comprendre l'action d'un groupe sur un immeuble. En corollaire nous retrouvons que dans un groupe de Coxeter et dans un produit graphé les intersections de sous-groupes paraboliques sont paraboliques.Dans la seconde partie, nous abordons la structure quasi-conforme du bord des immeubles hyperboliques à angles droits. En particulier, nous trouvons des exemples d'immeubles de dimension 3 et 4 dont le bord vérifie la propriété combinatoire de Loewner. Cette propriété est une version faible de la propriété de Loewner. Cette partie est motivée par le fait que, depuis G.D. Mostow, la structure quasi-conforme au bord a mené à plusieurs résultats de rigidités dans les espaces hyperboliques. Dans le cas des immeubles de dimension 2, M. Bourdon et H. Pajot ont prouvé la rigidité des quasi-isométries en utilisant la propriété de Loewner au bord.Show less >
Show more >L'objet de cette thèse est d'étudier la géométrie des immeubles à angles droits. Ces espaces, définis par J. Tits sont des espaces singuliers qui peuvent être vus comme des généralisations des arbres en dimension supérieure. La thèse est divisée en deux parties. Dans la première partie, nous décrivons comment la notion de résidus parallèles permet de comprendre l'action d'un groupe sur un immeuble. En corollaire nous retrouvons que dans un groupe de Coxeter et dans un produit graphé les intersections de sous-groupes paraboliques sont paraboliques.Dans la seconde partie, nous abordons la structure quasi-conforme du bord des immeubles hyperboliques à angles droits. En particulier, nous trouvons des exemples d'immeubles de dimension 3 et 4 dont le bord vérifie la propriété combinatoire de Loewner. Cette propriété est une version faible de la propriété de Loewner. Cette partie est motivée par le fait que, depuis G.D. Mostow, la structure quasi-conforme au bord a mené à plusieurs résultats de rigidités dans les espaces hyperboliques. Dans le cas des immeubles de dimension 2, M. Bourdon et H. Pajot ont prouvé la rigidité des quasi-isométries en utilisant la propriété de Loewner au bord.Show less >
English abstract : [en]
The object of this thesis is to study the geometry of right-angled buildings. These spaces, defined by J. Tits, are singular spaces that can be seen as trees of higher dimension. The thesis is divided in two parts. In ...
Show more >The object of this thesis is to study the geometry of right-angled buildings. These spaces, defined by J. Tits, are singular spaces that can be seen as trees of higher dimension. The thesis is divided in two parts. In the first part, we describe how the notion of parallel residues allows to understand the action of a group on the building. As a corollary we recover that in Coxeter groups and in graph products intersections of parabolic subgroups are parabolic. In the second part, we discuss the quasiconformal structure of boundaries of right-angled hyperbolic buildings thanks to combinatorial tools. In particular, we exhibit some examples of buildings of dimension 3 and 4 whose boundary satisfy the combinatorial Loewner property.This property is a weak version of the Loewner property. This part is motivated by the fact that the quasiconformal structure of the boundary led to many results of rigidity in hyperbolic spaces since G.D. Mostow. In the case of buildings of dimension 2, a lot of work has been done by M. Bourdon and H. Pajot. In particular, the Loewner property on the boundary permitted them to prove the quasi-isometry rigidity for some buildings of dimension 2.Show less >
Show more >The object of this thesis is to study the geometry of right-angled buildings. These spaces, defined by J. Tits, are singular spaces that can be seen as trees of higher dimension. The thesis is divided in two parts. In the first part, we describe how the notion of parallel residues allows to understand the action of a group on the building. As a corollary we recover that in Coxeter groups and in graph products intersections of parabolic subgroups are parabolic. In the second part, we discuss the quasiconformal structure of boundaries of right-angled hyperbolic buildings thanks to combinatorial tools. In particular, we exhibit some examples of buildings of dimension 3 and 4 whose boundary satisfy the combinatorial Loewner property.This property is a weak version of the Loewner property. This part is motivated by the fact that the quasiconformal structure of the boundary led to many results of rigidity in hyperbolic spaces since G.D. Mostow. In the case of buildings of dimension 2, a lot of work has been done by M. Bourdon and H. Pajot. In particular, the Loewner property on the boundary permitted them to prove the quasi-isometry rigidity for some buildings of dimension 2.Show less >
Language :
Anglais
Collections :
Source :
Files
- document
- Open access
- Access the document
- Th%C3%A8se_Antoine_Clais.pdf
- Open access
- Access the document