Mixture of Gaussians for Distance Estimation ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Mixture of Gaussians for Distance Estimation with Missing Data
Auteur(s) :
Eirola, Emil [Auteur correspondant]
School of Electrical Engineering [Aalto Univ]
Lendasse, Amaury [Auteur]
Laboratory of Computer and Information Science [CIS]
Vandewalle, Vincent [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Université de Lille, Droit et Santé
Biernacki, Christophe [Auteur]
MOdel for Data Analysis and Learning [MODAL]
School of Electrical Engineering [Aalto Univ]
Lendasse, Amaury [Auteur]
Laboratory of Computer and Information Science [CIS]
Vandewalle, Vincent [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Université de Lille, Droit et Santé
Biernacki, Christophe [Auteur]
MOdel for Data Analysis and Learning [MODAL]
Titre de la revue :
Neurocomputing
Pagination :
32-42
Éditeur :
Elsevier
Date de publication :
2014-05-05
ISSN :
0925-2312
Mot(s)-clé(s) en anglais :
Missing data
distance estimation
mixture model
distance estimation
mixture model
Discipline(s) HAL :
Statistiques [stat]/Méthodologie [stat.ME]
Résumé en anglais : [en]
The majority of all commonly used machine learning methods can not be applied directly to data sets with missing values. However, most such meth- ods only depend on the relative di erences between samples instead of their ...
Lire la suite >The majority of all commonly used machine learning methods can not be applied directly to data sets with missing values. However, most such meth- ods only depend on the relative di erences between samples instead of their particular values, and thus one useful approach is to directly estimate the pairwise distances between all samples in the data set. This is accomplished by tting a Gaussian mixture model to the data, and using it to derive estimates for the distances. Experimental simulations con rm that the pro- posed method provides accurate estimates compared to alternative methods for estimating distances. The experimental evaluation additionally shows that more accurately estimating distances leads to improved prediction performance for classification and regression tasks when used as inputs for a neural network.Lire moins >
Lire la suite >The majority of all commonly used machine learning methods can not be applied directly to data sets with missing values. However, most such meth- ods only depend on the relative di erences between samples instead of their particular values, and thus one useful approach is to directly estimate the pairwise distances between all samples in the data set. This is accomplished by tting a Gaussian mixture model to the data, and using it to derive estimates for the distances. Experimental simulations con rm that the pro- posed method provides accurate estimates compared to alternative methods for estimating distances. The experimental evaluation additionally shows that more accurately estimating distances leads to improved prediction performance for classification and regression tasks when used as inputs for a neural network.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Publication206.pdf
- Accès libre
- Accéder au document
- mdmixmod-neuroc.pdf
- Accès libre
- Accéder au document