A quantitative central limit theorem for ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
A quantitative central limit theorem for the effective conductance on the discrete torus
Auteur(s) :
Gloria, Antoine [Auteur]
Département de Mathématique [Bruxelles] [ULB]
Quantitative methods for stochastic models in physics [MEPHYSTO]
Nolen, James [Auteur]
Department of Mathematics [Durham]
Département de Mathématique [Bruxelles] [ULB]
Quantitative methods for stochastic models in physics [MEPHYSTO]
Nolen, James [Auteur]
Department of Mathematics [Durham]
Titre de la revue :
Communications on Pure and Applied Mathematics
Pagination :
2304--2348
Éditeur :
Wiley
Date de publication :
2016
ISSN :
0010-3640
Mot(s)-clé(s) en anglais :
random conductance
CLT
variance estimate
stochastic homogenization
CLT
variance estimate
stochastic homogenization
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Résumé en anglais : [en]
We study a random conductance problem on a d-dimensional discrete torus of size L>0. The conductances are independent, identically distributed random variables uniformly bounded from above and below by positive constants. ...
Lire la suite >We study a random conductance problem on a d-dimensional discrete torus of size L>0. The conductances are independent, identically distributed random variables uniformly bounded from above and below by positive constants. The effective conductance AL of the network is a random variable, depending on L, and the main result is a quantitative central limit theorem for this quantity as L→∞. In terms of scalings we prove that this nonlinear nonlocal function AL essentially behaves as if it were a simple spatial average of the conductances (up to logarithmic corrections). The main achievement of this contribution is the precise asymptotic description of the variance of AL.Lire moins >
Lire la suite >We study a random conductance problem on a d-dimensional discrete torus of size L>0. The conductances are independent, identically distributed random variables uniformly bounded from above and below by positive constants. The effective conductance AL of the network is a random variable, depending on L, and the main result is a quantitative central limit theorem for this quantity as L→∞. In terms of scalings we prove that this nonlinear nonlocal function AL essentially behaves as if it were a simple spatial average of the conductances (up to logarithmic corrections). The main achievement of this contribution is the precise asymptotic description of the variance of AL.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet Européen :
Collections :
Source :
Fichiers
- 1410.5734
- Accès libre
- Accéder au document