Long time bounds for the periodic ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Long time bounds for the periodic Benjamin–Ono–BBM equation
Auteur(s) :
Titre de la revue :
Nonlinear Analysis: Theory, Methods and Applications
Pagination :
5010 - 5021
Éditeur :
Elsevier
Date de publication :
2009
ISSN :
0362-546X
Mot(s)-clé(s) en anglais :
BO-BBM equation
KP equations
local and global well-posedness
long time bounds
KP equations
local and global well-posedness
long time bounds
Discipline(s) HAL :
Mathématiques [math]
Résumé en anglais : [en]
We consider the periodic Benjamin-Ono equation, regularized in the same manner the Benjamin-Bona-Mahony equation is found from the Korteweg-de Vries one, namely the equation $u_t + u_x + \alpha u u_x + \beta H(u_{xt})=0,$ ...
Lire la suite >We consider the periodic Benjamin-Ono equation, regularized in the same manner the Benjamin-Bona-Mahony equation is found from the Korteweg-de Vries one, namely the equation $u_t + u_x + \alpha u u_x + \beta H(u_{xt})=0,$ where $H$ is the Hilbert transform, $\alpha$ the quotient between the characteristic waves amplitude and the depth of the waves and $\beta$ the quotient between this depth and the wavelength. We show that the solution, starting from an initial datum of size $\varepsilon$, remains smaller than $\varepsilon$ for a time scale of order $\left(\varepsilon^{-1}\frac{\beta}{\alpha}\right)^2$, whereas the local well-posedness gives only a time of order $\varepsilon ^{-1}\frac{\beta}{\alpha}$.Lire moins >
Lire la suite >We consider the periodic Benjamin-Ono equation, regularized in the same manner the Benjamin-Bona-Mahony equation is found from the Korteweg-de Vries one, namely the equation $u_t + u_x + \alpha u u_x + \beta H(u_{xt})=0,$ where $H$ is the Hilbert transform, $\alpha$ the quotient between the characteristic waves amplitude and the depth of the waves and $\beta$ the quotient between this depth and the wavelength. We show that the solution, starting from an initial datum of size $\varepsilon$, remains smaller than $\varepsilon$ for a time scale of order $\left(\varepsilon^{-1}\frac{\beta}{\alpha}\right)^2$, whereas the local well-posedness gives only a time of order $\varepsilon ^{-1}\frac{\beta}{\alpha}$.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- 2009_03_NormBO_preprint.pdf
- Accès libre
- Accéder au document